INTER C.A. - COSTING

INDEX

Sr. No	Topic	Page No.
1.	Cost Accounting System	$1-12$
2.	Process Costing	$13-21$
3.	Joint Product \& By Product	$22-28$
4.	Service Costing	$29-37$
5.	Contract Costing	$38-42$
6.	Material Costing	$43-49$
7.	Employee Cost Control	$50-56$
8.	Budgetary Control	$57-65$
9.	Standard Costing	$66-74$
10.	Marginal Costing	$75-81$

COST ACCOUNTING SYSTEM

Q.1) The financial books of a company reveal the following data for the year ended 31st March, 2014:
(Rs.)

Opening Stock:

Finished goods 875 units $\quad 74,375$
Work-in-process 32,000

01.04.2013 to 31.3.2014

Raw materials consumed 7,80,000
Direct Labour 4,50,000
Factory overheads 3,00,000
Goodwill written off $1,00,000$
Administration overheads 2,95,000
Dividend paid 85,000
Bad Debts 12,000
$\begin{array}{ll}\text { Selling and Distribution Overheads } & 61,000\end{array}$
Interest received 45,000
Rent received 18,000
Sales 14,500 units $\quad 20,80,000$
Closing Stock: Finished goods 375 units 41,250
Work-in-process 38,667

The cost records provide as under:
$\rightarrow \quad$ Factory overheads are absorbed at 60% of direct wages.
$\rightarrow \quad$ Administration overheads are recovered at 20% of factory cost.
$\rightarrow \quad$ Selling and distribution overheads are charged at Rs. 4 per unit sold.
$\rightarrow \quad$ Opening Stock of finished goods is valued at Rs. 104 per unit.
$\rightarrow \quad$ The company values work-in-process at factory cost for both Financial and Cost Profit Reporting.

Required:

(i) Prepare statements for the year ended 31st March, 2014 show
$\rightarrow \quad$ the profit as per financial records
$\rightarrow \quad$ the profit as per costing records.
(ii) Present a statement reconciling the profit as per costing records with the profit as per Financial Records.

Solution:

(i) Statement of Profit as per financial records

OR
Profit \& Loss Account of the company
(for the year ended March 31, 2014)

	(Rs.)		(Rs.)
To Opening stock:		By Sales	$20,80,000$
Finished Goods	74,375	By Closing stock:	
Work-in-process	32,000	Finished Goods	41250
To Raw materials consumed	$7,80,000$	Work-in-Process	38,667
To Direct labour	$4,50,000$	By Rent received	18,000
To Factory overheads	$3,00,000$	By Interest received	45,000
To Goodwill written off	$1,00,000$		
To Administration overheads	$2,95,000$		
To Selling \& distribution overheads	61,000		
To Dividend paid	85,000		
To Bad debts	12,000		
To Profit	33,542		$\mathbf{2 2 , 2 2 , 9 1 7}$
	$\mathbf{2 2 , 2 2 , 9 1 7}$		

Statement of Profit as per costing records

(for the year ended March 31,2014)

	(Rs.)	(Rs.)
Sales revenue (14,500 units) (A)		20,80,000
Cost of Sales:		
Opening stock (875 units x Rs. 104)	91,000	
Add: Cost of production of 14,000 units	17,92,000	
(Refer to Working Note 1\& 2)		
Less: Closing stock ($\left.\frac{\text { Rs. } 17,92,000 \times 375 \text { units }}{14,000 \text { units }}\right)$	$(48,000)$	
Production cost of goods sold (14,500 units)	18,35,000	
Selling \& distribution overheads (14,500 units x Rs. 4)	58,000	
Cost of sales: (B)	$\underline{18,93,000}$	18,93,000
Profit: $\{(\mathbf{A})-(\mathrm{B})\}$		1,87,000

(ii) Statement of Reconciliation
(Reconciling the profit as per costing records with the profit as per financial records)

	(Rs.)	(Rs.)
Profit as per Cost Accounts		$1,87,000$
Add: Admin. overheads over absorbed (Rs. 2,98,667 - Rs. 2,95,000)	3,667	
Opening stock overvalued (Rs. 91,000 - Rs. 74,375)	16,625	
Interest received	45,000	
Rent received	$\underline{18,000}$	$\underline{83,292}$
		$2,70,292$
Less: Factory overheads under recovery (Rs. 2,98,667 - Rs. 2,95,000)	30,000	
Selling \& distribution overheads under recovery (Rs. 61,000 - Rs. 58,000)	3,000	
Closing stock overvalued (Rs. 48,000 - Rs. 41,250)	6,750	
Goodwill written off	$1,00,000$	
Dividend	85,000	
Bad debts	$\underline{12,000}$	$\underline{2,36,750}$
Profit as per financial accounts		33,542

Working Notes:

1. Number of units produced	Units
Sales	14,500
Add: Closing stock	$\underline{375}$
Total	14,875
Less: Opening stock	$\underline{875}$
Number of units produced	$\underline{14,000}$

2. Cost Sheet

	(Rs.)
Raw materials consumed	$7,80,000$
Direct labour	$4,50,000$
Prime cost	$12,30,000$
Factory overheads (60\% of direct wages)	$\underline{2,70,000}$
Factory cost	$15,00,000$
Add: Opening work-in-process	32,000
Less: Closing work-in-process	$\underline{38,667}$
Factory cost of goods produced	$14,93,333$
Administration overheads (20\% of factory cost)	$\underline{2,98,667}$
Cost of production of 14,000 units	$17,92,000$

Cost of production per unit: $\frac{\text { Total Cost of Production }}{\text { No.of units produced }}=\frac{\text { Rs. } 17,92,000}{14,000 \text { units }}=$ Rs. 128
(Q.2) A manufacturing company disclosed a net loss of Rs. 3,47,000 as per their cost accounts for the year ended March 31,2014. The financial accounts however disclosed a net loss of Rs. $5,10,000$ for the same period. The following information was revealed as a result of scrutiny of the figures of both the sets of accounts.

		(Rs.)
(i)	Factory Overheads under-absorbed	40,000
(ii)	Administration Overheads over-absorbed	60,000
(iii)	Depreciation charged in Financial Accounts	$3,25,000$
(iv)	Depreciation charged in Cost Accounts	$2,75,000$
(v)	Interest on investments not included in Cost Accounts	96,000
(vi)	Income-tax provided	54,000
(vii)	Interest on loan funds in Financial Accounts	$2,45,000$
(viii)	Transfer fees (credit in financial books)	24,000
(ix)	Stores adjustment (credit in financial books)	14,000
(x)	Dividend received	32,000

Prepare a memorandum Reconciliation Account

Solution:

Memorandum Reconciliation Accounts

Dr.

Cr.

	(Rs.)		(Rs.)
To Net Loss as per Costing books	$3,47,000$	By Administration overheads over recovered in cost accounts	60,000
To Factory overheads under absorbed in Cost Accounts	40,000	By Interest on investment not included in Cost Accounts	96,000
To Depreciation under charged in Cost Accounts	50,000	By Transfer fees in Financial books	24,000
To Income-Tax not provided in Cost Accounts	54,000	By Stores adjustment (Credit in financial books)	14,000
To Interest on Loan Funds in Financial Accounts	$2,45,000$	By Dividend received in financial books	32,000
		By Net loss as per Financial books	$5,10,000$
$\mathbf{7 , 3 6 , 0 0 0}$		$\mathbf{7 , 3 6 , 0 0 0}$	

(Q.3) A manufacturing company has disclosed a net loss of Rs. $2,13,000$ as per their cost accounting records for the year ended March 31, 2014. However, their financial accounting records disclosed a net loss of Rs. 2,58,000 for the same period. A scrutiny of data of both the sets of books of accounts revealed the following information:

		(Rs.)
(i)	Factory overheads under-absorbed	5,000
(ii)	Administration overheads over-absorbed	3,000
(iii)	Depreciation charged in financial accounts	70,000
(iv)	Depreciation charged in cost accounts	80,000
(v)	Interest on investments not included in cost accounts	20,000
(vi)	Income-tax provided in financial accounts	65,000
(vii)	Transfer fees (credit in financial accounts)	2,000
(viii)	Preliminary expenses written off	3,000
(ix)	Over-valuation of closing stock of finished goods in cost accounts	7,000

Prepare a Memorandum Reconciliation Account.

Solution:

Particulars	(Rs.)	Particulars	(Rs.)
To Net loss as per Costing books	$2,13,000$	By Administrative overhead over absorbed in costs	3,000
To Factory overheads under absorbed	5,000	By Depreciation over charged in Cost books (Rs.80,000-Rs.70,000)	10,000
To Income tax not provided in Cost books	65,000	By Interest on investments not included in Cost books	20,000
To Preliminary expenses written off in Financial books	3,000	By Transfer fees not considered in Cost books	2,000
To Over-valuation of Closing Stock of finished goods in Cost books	7,000	By Net loss as per Financial books	$2,58,000$
	$\mathbf{2 , 9 3 , 0 0 0}$		$\mathbf{2 , 9 3 , 0 0 0}$

(Q.4) BPR Limited keeps books on integrated accounting system. The following balances appear in the books as on April 1, 2013.

	Dr. (Rs.)	Cr. (Rs.)
Stores Control A/c	40,950	-
Work-in-progress A/c	38,675	-
Finished Goods A/c	52,325	-
Bank A/c	-	22,750
Trade Payables A/c	-	18,200
Non-Current Assets A/c	$1,47,875$	-
Trade Receivables A/c	27,300	-
Share Capital A/c	-	$1,82,000$
Provision for Depreciation A/c	-	11,375
Provision for Doubtful Debts A/c	-	3,725
Factory Overheads Outstanding A/c	-	6,250
Pre-Paid Administration Overheads A/c	9,975	-
Profit \& Loss A/c*	-	72,800
(*Reserve \& Surplus)	$3,17,100$	$3,17,100$

The transactions for the year ended March 31, 2014, were as given below:

	(Rs.)	(Rs.)
Direct Wages	$1,97,925$	-
Indirect Wages	$\underline{11,375}$	$2,09,300$
Purchase of materials (on credit)	$2,27,500$	
Materials issued to production	$2,50,250$	
Material issued for repairs	4,550	
Goods finished during the year (at cost)	$4,89,125$	
Credit Sales	$6,82,500$	
Cost of Goods sold	$5,00,500$	
Production overheads absorbed	$1,09,200$	
Production overheads paid during the year	91,000	
Production overheads outstanding at the end of year	7,775	
Administration overheads paid during the year	27,300	
Selling overheads incurred	31,850	
Payment to Trade Payables	$2,29,775$	
Payment received from Trade Receivables	$6,59,750$	
Depreciation of Machinery	14,789	
Administration overheads outstanding at the end of year	2,225	
Provision for doubtful debts at the end of the year	4,590	

Required:

Write up accounts in the integrated ledger of BPR Limited and prepare a Trial balance.

Solution

Stores Control A/c

Dr.
Cr.

	(Rs.)		(Rs.)
To Balance b/d	40,950	By WIP A/c	$2,50,250$
To Trade Payables A/c	$2,27,500$	By Production overheads A/c	4,550
		By Balance c/d	13,650
	$\mathbf{2 , 6 8 , 4 5 0}$		$\mathbf{2 , 6 8 , 4 5 0}$

Wages Control A/c
Dr.
Cr.

	(Rs.)		(Rs.)
To Bank (Direct wages)	$1,97,925$	By Work-in-Progress A/c	$1,97,925$
To Bank (Indirect wages)	11,375	By Production overheads A/c	11,375
	$\mathbf{2 , 0 9 , 3 0 0}$		$\mathbf{2 , 0 9 , 3 0 0}$

Work-in-Progress A/c

Dr.

	(Rs.)		(Rs.)
To Balance b/d	38,675	By Finish goods A/c	$4,89,125$
To Wages control A/c	$1,97,925$	By Balance c/d	$1,06,925$
To Stores control A/c	$2,50,250$		
To Production overheads A/c	$1,09,200$		
	$\mathbf{5 , 9 6 , 0 5 0}$		$\mathbf{5 , 9 6 , 0 5 0}$

Production Overheads A/c
Dr.
Cr.

	(Rs.)		(Rs.)
To Wages control A/c	11,375	By WIP A/c	$1,09,200$
To Stores control A/c	4,550	By Profit \& Loss A/c	14,039
To Bank (Rs. 91,000 - Rs. 6,250)	84,750	(Under-absorbed overheads Written off)	
To Production overheads outstanding	7,775		
To Provision for depreciation	14,789		$\mathbf{1 , 2 3 , 2 3 9}$
	$\mathbf{1 , 2 3 , 2 3 9}$		

Production overhead incurred $=$ Payment made + Closing Outstanding + Prov. for Depreciation Opening Outstanding

Finished Goods A/c

Dr.

Cr.

Cr.

Cr.

Cr.

Cr.

	(Rs.)		(Rs.)
To Bank	6,250	By Balance b/d	6,250
To Balance c/d	7,775	By Production overheads	7,775
	$\mathbf{1 4 , 0 2 5}$		$\mathbf{1 4 , 0 2 5}$

Prepaid Administration Overheads A/c
Dr.

	(Rs.)		(Rs.)
To Balance b/d	9,975	By Admin. overheads A/c	9,975
	$\mathbf{9 , 9 7 5}$		$\mathbf{9 , 9 7 5}$

Provision for Depreciation A/c

Dr.

	(Rs.)		(Rs.)
To Balance c/d	26,164	By Balance b/d	11,375
		By Production overheads A/c	14,789
	$\mathbf{2 6 , 1 6 4}$		$\mathbf{2 6 , 1 6 4}$

Provision for Doubtful Debts A/c
Dr.

	(Rs.)		(Rs.)
To Balance c/d	4,590	By Balance b/d	3,725
		By Profit \& Loss A/c	865
	$\mathbf{4 , 5 9 0}$		$\mathbf{4 , 5 9 0}$

Profit \& Loss A/c
Dr.

	(Rs.)		(Rs.)
To Provision for doubtful debts	865	By Balance b/d	72,800
To Production overheads	14,039	By Sales A/c	$1,50,150$
To Balance c/d*	$2,08,046$		
	$\mathbf{2 , 2 2 , 9 5 0}$		$\mathbf{2 , 2 2 , 9 5 0}$

* Profit is transferred to Reserve \& Surplus.

Trade Receivables A/c

Dr.

	(Rs.)		(Rs.)
To Balance b/d	27,300	By Bank A/c	$6,59,750$
To Sales A/c	$6,82,500$	By Balance c/d	50,050
	$\mathbf{7 , 0 9 , 8 0 0}$		$\mathbf{7 , 0 9 , 8 0 0}$

Trade Payables A/c

Dr.

	(Rs.)		(Rs.)
To Bank	$2,29,775$	By Balance b/d	18,200
To Balance c/d	15,925	By Stores control/Ac	$2,27,500$
	$\mathbf{2 , 4 5 , 7 0 0}$		$\mathbf{2 , 4 5 , 7 0 0}$

Non Current Assets A/c

Dr.
Cr.

	(Rs.)		(Rs.)
To Balance b/d	$1,47,875$	By balance \mathbf{c} / d	$1,47,875$

Bank A/c
Dr.
Cr.

	(Rs.)		(Rs.)
To Trade Receivables	$6,59,750$	By Balance b/d	22,750
		By Direct wages	$1,97,925$
		By Indirect wages	11,375
		By Production overheads (Rs. 84,750 + Rs.6,250)	91,000
		By Admn. Overheads A/c	27,300
		By Selling overheads A/c	31,850
		By Trade Payables A/c	$2,29,775$
		By Balance c/d	47,775
	$\mathbf{6 , 5 9 , 7 5 0}$		$\mathbf{6 , 5 9 , 7 5 0}$

Trial Balance
As on March 31, 2014
Dr.

	(Rs.)	(Rs.)
Stores control A/c	13,650	
Work in Progress A/c	$1,06,925$	
Finished goods A/c	80,450	
Bank A/c	47,775	
Trade Payables A/c		15,925
Non- current Assets A/c	$1,47,875$	
Trade Receivables A/c	50,050	
Share capital A/c		$1,82,000$
Provision for depreciation A/c		26,164
Reserve \& Surplus (Profit \& Loss A/c)		$2,08,046$
Production overheads outstanding A/c		7,775
Outstanding administrative overheads A/c		2,225
Provision for doubtful debt		4,590
	$\mathbf{4 , 4 6 , 7 2 5}$	$\mathbf{4 , 4 6 , 7 2 5}$

(Q.5)

The following is the Trading and Profit \& Loss Account of Omega Limited:
Dr.
Cr.

Particulars	(Rs.)	Particulars	(Rs.)	
To Materials consumed	$23,01,000$	By Sales (30,000 units)	$48,75,000$	
To Direct wages	$12,05,750$	By Finished goods Stock (1,000 units)	$1,30,000$	
To Production Overheads	$6,92,250$	By Work-in-progress:		
To Administration Overheads	$3,10,375$	Materials		
To Selling and Distribution Overheads	$3,68,875$	Wages	26,000	
To Preliminary Expenses written off	22,750	Production Overheads	$\underline{16,250}$	97,500
To Goodwill written off	45,500			
To Fines	3,250	By Dividends received	$3,90,000$	
To Interest on Mortgage	13,000	By Interest on bank deposits	65,000	
To Loss on Sale of machine	16,250			
To Taxation	$1,95,000$			
To Net Profit for the year	$3,83,500$		$\mathbf{5 5 , 5 7 , 5 0 0}$	
	$\mathbf{5 5 , 5 7 , 5 0 0}$			

Omega Limited manufactures a standard unit.
The Cost Accounting records of Omega Ltd. show the following:
(i) Production overheads have been charged to work-in-progress at 20% on Prime cost.
(ii) Administration Overheads have been recovered at Rs. 9.75 per finished Unit.
(iii) Selling \& distribution Overheads have been recovered at Rs. 13 per Unit sold.
(iv) The Under- or Over-absorption of Overheads has not been transferred to costing P/L A/c.

Required:

(i) Prepare a proforma Costing Profit \& Loss account, indicating net profit.
(ii) Prepare Control accounts for Production overheads, Administration Overheads and Selling \& Distribution Overheads.
(iii) Prepare a statement reconciling the profit disclosed by the Cost records with that shown in Financial accounts.
Solution:
(i) Costing Profit \& Loss A/c

	(Rs.)
Materials	$23,01,000$
Wages	$\underline{12,05,750}$
Prime Cost	$35,06,750$
Production overheads (20\% of Prime Cost)	$\underline{7,01,350}$
	$42,08,100$
Less: Work in Progress	$\underline{97,500}$
Manufacturing cost incurred during the period	$41,10,600$
Add: Administration Overheads (Rs.9.75 x 31,000 units)	$\underline{3,02,250}$
Cost of Production	$44,12,850$
Less : Closing Finished goods stock $\left(R s .44,12,850 \times \frac{1,000}{31,000}\right)$	$\underline{1,42,350}$
Cost of Goods Sold	$42,70,500$
Add Selling \& Distribution Overheads (Rs. $13 \times 30,000$ units)	$\underline{3,90,000}$
Cost of Sales	$46,60,500$
Profit (Balancing figure)	$\underline{2,14,500}$
Sales	$48,75,000$

(ii) Production $\mathrm{OH} \mathrm{A} / \mathrm{c}$

	(Rs.)		(Rs.)
To Gen ledger Adj. A/c	$6,92,250$	By WIP A/c	$7,01,350$
To Overhead adj. A/c (Over-absorption)	9,100		
	$\mathbf{7 , 0 1 , 3 5 0}$		$\mathbf{7 , 0 1 , 3 5 0}$

Administration Overheads A/c

	(Rs.)		(Rs.)
To Gen Ledger Adj. A/c	$3,10,375$	By Finished goods A/c	$3,02,250$
		By Overhead adj. A/c (Under-absorption)	8,125
	$\mathbf{3 , 1 0 , 3 7 5}$		$\mathbf{3 , 1 0 , 3 7 5}$

Selling \& Distribution Overheads A/c

	(Rs.)		(Rs.)
To Gen. Ledger Adj A/c	$3,68,875$	By Cost of Sales A/c	$3,90,000$
To Overhead Adj. A/c (Over-absorption)	21,125		
	$\mathbf{3 , 9 0 , 0 0 0}$		$\mathbf{3 , 9 0 , 0 0 0}$

(iii) Reconciliation Statement

	(Rs.)	(Rs.)
Profits as per cost accounts		$2,14,500$
Add: Production Overheads- over absorbed	9,100	
Selling \& Distribution Overheads- over absorbed	21,125	
Dividend received	$3,90,000$	
Interest on bank deposits	65,000	$4,85,225$
		$6,99,725$
Less: Administration Overheads- under-absorbed	8,125	
Preliminary exp. Written off	22,750	
Goodwill written off	45,500	
Fines	3,250	
Interest on Mortgage	13,000	
Loss on sale of machinery	16,250	
Taxation	$1,95,000$	
Write-down of Finished stock (Rs.1,42,350 - Rs.1,30,000)	12,350	$(3,16,225)$
Profit as per Financial Accounts		$3,83,500$

PROCESS COSTING

Q.1) Following information is available regarding process A for the month of February, 2014:

Production Record:

Units in process as on 01.02.2014 4,000
(All materials used, 25% complete for labour and overhead)
New units introduced $\quad 16,000$
Units completed 14,000
Units in process as on 28.02.2014 6,000
(All materials used, 33-1/3\% complete for labour and overhead)
Cost Records:
Work-in-process as on 01.02 .2014 (Rs.)
Materials $\quad 6,000$
Labour $\quad 1,000$
Overhead $\quad \underline{1,000}$
$\begin{array}{lc} & \underline{8,000} \\ \text { Cost during the month } & 25,600\end{array}$
Labour $\quad 15,000$
Overhead $\quad \underline{15,000}$ 55,600

Presuming that average method of inventory is used, prepare:
(i) Statement of Equivalent Production.
(ii) Statement showing Cost for each element.
(iii) Statement of Apportionment of cost.
(iv) Process Cost Account for Process A.

Solution:

(i) Statement of Equivalent Production (Average cost method)

Input (Units)	Particulars	Output Units	Equivalent Production					
			Materials		Labour		Overheads	
			(\%*)	Units**	$(\%)^{*}$	Units**	(\%)*	Units**
20,000	Completed		100	14,000	100	14,000	100	14,000
	WIP		100	6,000	$33-1 / 3$	2,000	$33-1 / 3$	2,000
$\mathbf{2 0 , 0 0 0}$				$\mathbf{2 0 , 0 0 0}$		$\mathbf{1 6 , 0 0 0}$		$\mathbf{1 6 , 0 0 0}$

*Percentage of completion ** Equivalent units
(ii) Statement showing Cost for each element

Particulars	Materials	Labour	Overhead	Total
Cost of opening work-in-progress (Rs.)	6,000	1,000	1,000	8,000
Cost incurred during the month (Rs.)	25,600	15,000	15,000	55,600
Total cost (Rs.) : (A)	31,600	16,000	16,000	63,600
Equivalent units : (B)	20,000	16,000	16,000	
Cost per equivalent unit (Rs.) : C= (A $\div \mathrm{B})$	1.58	1	1	3.58

(iii) Statement of Apportionment of cost

	(Rs.)	(Rs.)
Value of output transferred: (A) (14,000 units \times Rs. 3.58)		50,120
Value of closing work-in-progress: (B)		
Material (6,000 units \times Rs.1.58)	9,480	
Labour (2,000 units \times Rs. 1)	2,000	
Overhead (2,000 units \times Rs. 1)	2,000	13,480
Total cost $:(\mathrm{A}+\mathrm{B})$		63,600

(iv) Process- A Account

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Opening WIP	4,000	8,000	By Completed units	14,000	50,120
To Materials	16,000	25,600	By Closing WIP	6,000	13,480
To Labour	15,000				
To Overhead	15,000				
	$\mathbf{2 0 , 0 0 0}$	$\mathbf{6 3 , 6 0 0}$		$\mathbf{2 0 , 0 0 0}$	$\mathbf{6 3 , 6 0 0}$

Q.2)

Following details are related to the work done in Process 'A' of XYZ Company during the month of March, 2014:

	(Rs.)
Opening work-in-progress (2,000 units):	
Materials	80,000
Labour	15,000
Overheads	45,000
Materials introduced in Process Rs.A' (38,000 units)	$14,80,000$
Direct labour	$3,59,000$
Overheads	$10,77,000$
Units scrapped: 3,000 units,	
Degree of completion:	

Materials
Labour and overheads
Closing work-in-progress : 2,000 units,
Degree of Completion:
Materials
Labour and overheads
Units finished and transferred to Process ' B ' : 35,000 units
Normal Loss:
5% of total input including opening work-in-progress
Scrapped units fetch Rs. 20 per piece.
You are required to prepare:
(i) Statement of equivalent production;
(ii) Statement of cost;
(iii) Statement of distribution cost; and
(iv) Process 'A' Account, Normal and Abnormal Loss Accounts.

Solution:
(i) Statement of Equivalent Production

Input	Units	Output	Units	Equivalent production			
				Material		Labour \& Overheads	
				(\%)	Units	(\%)	Units
Opening WIP	2,000	Completed and transferred to Process 'B'	35,000	100	35,000	100	35,000
Units introduced	38,000	Normal loss (5\% of 40,000 units)	2,000	-	-	-	-
		Abnormal loss	1,000	100	1,000	80	800
		Closing WIP	2,000	100	2,000	80	1,600
	40,000		40,000		38,000		37,400

(ii) Statement of Cost

Details	Cost at the beginning of process (Rs.)	Cost added	Total cost	Equivalent Units (Rs.)	Cost per unit
(Rs.)	(Rs.)	(Rs.)			
Material	80,000	$14,80,000$	$15,60,000$		
Less: Value of normal loss $(2,000$ units \times Rs. 20$)$					
			$(40,000)$		40
Labour	15,000	$3,59,000$	$3,74,000$	37,400	10
Overheads	45,000	$10,77,000$	$11,22,000$	37,400	30
Total	$\mathbf{1 , 4 0 , 0 0 0}$	$\mathbf{2 9 , 1 6 , 0 0 0}$	$\mathbf{3 0 , 1 6 , 0 0 0}$		$\mathbf{8 0}$

(iii) Statement of Distribution of Cost

	(Rs.)
Completed and transferred to Process-B (35,000 units \times Rs. 80$)$	$28,00,000$
Abnormal Loss:	
Materials (1,000 units \times Rs. 40)	40,000
Wages (800 units \times Rs. 10)	8,000
Overheads (800 units \times Rs. 30)	$\underline{24,000}$
	72,000
Closing WIP:	
Materials (2,000 units \times Rs. 40)	80,000
Wages (1,600 units \times Rs. 10)	16,000
Overheads (1,600 units \times Rs. 30)	$\underline{48,000}$
	$1,44,000$

(iv) Process 'A' Account

Dr.
Cr.

Particulars	Units	Amount	Particulars	Units	Amount
To Opening WIP	2,000	$1,40,000^{*}$	By Normal Loss	2,000	40,000
To Material introduced	38,000	$14,80,000$	By Abnormal loss	1,000	72,000
To Direct labour		$3,59,000$	By Process 'B' A/c transfer to next process	35,000	$28,00,000$
To Overheads		$10,77,000$	By Closing WIP	2,000	$1,44,000$
	$\mathbf{4 0 , 0 0 0}$	$\mathbf{3 0 , 5 6 , 0 0 0}$		$\mathbf{4 0 , 0 0 0}$	$\mathbf{3 0 , 5 6 , 0 0 0}$

*Materials + Labour + Overheads = Rs. $(80,000+15,000+45,000)=$ Rs. 1,40,000.

Normal Loss Account

Particulars	Units	Amount	Particulars	Units	Amount
To Process-A A/c	2,000	40,000	By Cost Ledger Control A/c	2,000	40,000
	$\mathbf{2 , 0 0 0}$	$\mathbf{4 0 , 0 0 0}$		$\mathbf{2 , 0 0 0}$	$\mathbf{4 0 , 0 0 0}$

Abnormal Loss Account

Particulars	Units	Amount	Particulars	Units	Amount
To Process-A A/c	1,000	72,000	By Cost Ledger Control A/c.	1,000	20,000
			By Costing Profit \& Loss A/c.		52,000
	$\mathbf{1 , 0 0 0}$	$\mathbf{7 2 , 0 0 0}$		$\mathbf{1 , 0 0 0}$	$\mathbf{7 2 , 0 0 0}$

(Q.3) A product passes through three processes ' X ', ' Y ' and ' Z '. The output of process ' X ' and ' Y ' is transferred to next process at cost plus 20 per cent each on transfer price and the output of process ' Z ' is transferred to finished stock at a profit of 25 per cent on transfer price. The following information are available in respect of the year ending 31st March, 2014:

	Process-	Process-	Process-	Finished Stock
	\mathbf{X}	\mathbf{Y}	Z	(Rs.)
Opening stock	(Rs.)	(Rs.)	45,000	
Material	15,000	27,000	40,000	-
Wages	80,000	65,000	50,000	-
Manufacturing Overheads	$1,25,000$	$1,08,000$	92,000	-
Closing stock	96,000	72,000	66,500	50,000
Inter process profit included in Opening stock	20,000	32,000	39,000	20,000

Stock in processes is valued at prime cost. The finished stock is valued at the price at which it is received from process ' Z '. Sales of the finished stock during the period was Rs. $14,00,000$.

You are required to prepare:
(i) Process accounts and finished stock account showing profit element at each stage.
(ii) Costing Profit and Loss account.
(iii) Show the relevant items in the Balance Sheet.

Solution:

(i) Process ' X ' Account

Dr.
Cr.

Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening Stock	15,000	-	15,000	By Process 'Y, A/c (Transfer)	$2,96,000$	74,000	$3,70,000$
To Material	80,000	-	80,000				
To Wages	$1,25,000$	-	$1,25,000$				
Total	$2,20,000$	-	$2,20,000$				
Less: Closing stock	20,000	-	20,000				
Prime Cost	$2,00,000$		$2,00,000$				
To Manufacturing Overheads	96,000	-	96,000				
Total cost	$2,96,000$	$--2,96,000$					
To Costing Profit and Loss A/c (20\% on transfer Price or 25\% on cost)		74,000	74,000				

Process ' Y ' Account

Dr.
Cr.

Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening Stock	23,000	4,000	27,000	By Process 'Z A/c (Transfer)	$5,36,379$ $2,26,121$	$7,62,500$	
To Process 'X' A/c	$2,96,000$	74,000	$3,70,000$				
To Material	65,000	-	65,000				
To Wages	$1,08,000$	-	$1,08,000$				
Total	$4,92,000$	78,000	$5,70,000$				
Less: Closing stock	27,621	4,379	32,000				
Prime Cost	$4,64,379$	73,621	$5,38,000$				
To Manufacturing Overheads	72,000	-	72,000				
Total cost	$5,36,379$	73,621	$6,10,000$				
To Costing Profit and Loss A/c (20\% on transfer	$-1,52,500$	$1,52,500$					
Price or 25\% on cost)							

Process ' Z ' Account

Dr.

Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening Stock	30,000	10,000	40,000	By Finished Stock A/c (Transfer)	$7,45,629$	$5,50,371$	$12,96,000$
To Process 'Y' A/c	$5,36,379$	$2,26,121$	$7,62,500$				
To Material	50,000	-	50,000				
To Wages	92,000	-	92,000				
Total	$7,08,379$	$2,36,121$	$9,44,500$				
Less: Closing stock	29,250	9,750	39,000				
Prime Cost	$6,79,129$	$2,26,371$	$9,05,500$				
To Manufacturing Overheads	66,500	-	66,500				
Total cost	$7,45,629$	$2,26,371$	$9,72,000$				
To Costing Profit and Loss A/c (25\% on transfer Price or $33 ~ 1 / 3 \%$ on cost)	$-3,24,000$	$3,24,000$					
	$\mathbf{7 , 4 5 , 6 2 9}$	$\mathbf{5 , 5 0 , 3 7 1}$	$\mathbf{1 2 , 9 6 , 0 0 0}$		$\mathbf{7 , 4 5 , 6 2 9}$	$\mathbf{5 , 5 0 , 3 7 1}$	$\mathbf{1 2 , 9 6 , 0 0 0}$

Finished Stock Account
Dr.
Cr.

Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening Stock	25,000	20,000	45,000	By Costing P\&L A/c A/c (Transfer)	$7,41,862$	$6,58,138$	$14,00,000$
To Process 'Z' A/c	$7,45,629$	$5,50,371$	$12,96,000$				
Total	$7,70,629$	$5,70,371$	$13,41,000$				
Less: Closing stock	28,767	21,233	50,000				
To Costing Profit and Loss A/c	$7,41,862$	$5,49,138$	$12,91,000$				
		$1,09,000$	$1,09,000$				
	$\mathbf{7 , 4 1 , 8 6 2}$	$\mathbf{6 , 5 8 , 1 3 8}$	$\mathbf{1 4 , 0 0 , 0 0 0}$		$\mathbf{7 , 4 1 , 8 6 2}$	$\mathbf{6 , 5 8 , 1 3 8}$	$\mathbf{1 4 , 0 0 , 0 0 0}$

Costing Profit \& Loss Account

for the year ending 31st March, 2014
Dr.
Cr.

Particulars	Amount (Rs.)	Particulars	Amount (Rs.)
To Provision for unrealized profit on closing stock (Rs. 4,379 + Rs. 9,750 + Rs. 21,233)	35,362	By Provision for unrealized profit on opening stock (Rs. 4,000 + Rs. $10,000+$ Rs. 20,000)	34,000
To Net Profit	6,58,138	By Process X A/c	74,000
		By Process Y A/c	1,52,500
		By Process Z A/c	3,24,000
		By Finished Stock A/c	1,09,000
	6,93,500		6,93,500

Workings:

Calculation of amount of unrealized profit on closing stock:
Process ' X ' = Nil
Process ' Y ' $=\frac{\text { Rs. } 78,000}{R s .5,70,000} \times$ Rs. $32,000=$ Rs. 4,379
Process ' Z ' $=\frac{\text { Rs. } 2,36,121}{R s .9,44,500} \times$ Rs. $39,000=$ Rs. 9,750
Finished Stock $=\frac{\text { Rs. } 5,50,371}{R s .12,96,000} \times$ Rs. $50,000=$ Rs. $21,233$.

Balance Sheet as on 31st March, 2014 (Extract)

Liabilities	Amount (Rs.)	Assets	Amount (Rs.)
Net profit	$6,58,138$	Closing stock:	
		Process - X	20,000
		Process - Y	32,000
		Process - Z	39,000
		Finished stock	50,000
			$1,41,000$
		Less: Provision for unrealized profit	35,362
			$1,05,638$

(Q.4) A product passes through two processes A and B. During the year 2011, the input to process A of basic raw material was 8,000 units @ Rs. 9 per unit. Other information for the year is a s follows:

	Process A	Process B
Output units	7,500	4,800
Normal loss (\% to input)	5%	10%
Scrap value per unit (Rs.)	2	10
Direct wages (Rs.)	12,000	24,000
Direct expenses (Rs.)	6,000	5,000
Selling price per unit (Rs.)	15	25

Total overheads Rs.17,400 were recovered as percentage of direct wages. Selling expenses were Rs. 5,000 . There are not allocate to the processes. $2 / 3$ of the output of Process A was passed on to the next process and the balance was sold. The entire output of Process B was sold.
Prepare Process A an B Accounts.

Solution :

Process- A Account

Particulars	Units	Amount (Rs.)	Particulars	Units	Amount (Rs.)
To Input	8,000	72,000	By Normal Loss (5\% of 8,000 units \times Rs. 2)	400800	
To Direct Wages	-	12,000	By Abnormal loss (100 units \times Rs. 12.50$)$	100	1,250
To Direct Exp.	-	6,000	By Process- B A/c (7,500 units $\times \frac{2}{3} \times$ Rs.12.50)	5,000	62,500

Cost per unit $=\frac{\text { Rs. } 95,800-- \text { Rs. } 800}{8,000 \text { units }-400 \text { units }}=\frac{\text { Rs. } 95,000}{7,600 \text { units }}=$ Rs. 12.50

Process- B Account

Particulars	Units	Amount (Rs.)	Particulars	Units	Amount (Rs.)
To Process- A A/c	5,000	62,500	By Normal Loss (10\% of 5,000 units \times Rs.10)	500	5,000
To Direct Wages	-	24,000	 loss A/c (4,800 units \times Rs. 21.80)	4,800	$1,04,640$
To Direct Expenses	-	5,000			
To Overheads	-	11,600			
$\left(\right.$ Rs.17,400 $\times \frac{2}{3}$)				$\mathbf{5 , 3 0 0}$	$\mathbf{1 , 0 9 , 6 4 0}$
To Abnormal gain	300	6,540			
	$\mathbf{5 , 3 0 0}$	$\mathbf{1 , 0 9 , 6 4 0}$			

Cost per unit $=\frac{\text { Rs. } 1,03,100-\text { Rs. } 5,000}{5,000 \text { units }-500 \text { units }}=\frac{\text { Rs. } 98,100}{4,500 \text { units }}=$ Rs. 21.80

Working

Profit \& Loss A/c

Particulars	Amount (Rs.)	Amount (Rs.)	Particulars	Amount (Rs.)	Amount (Rs.)
To Cost of Sales: Process A (2,500 units \times Rs. 12.50)	31,250		By Sales: Process A (2,500 units \times Rs.15)	37,500	
Process B (4,800 units \times Rs. 21.80)	$1,04,640$	$1,35,890$	Process B (4,800 units \times Rs. 25)	$1,20,000$	$1,57,500$
To Abnormal Loss:		1,050	By Abnormal gain: Process B [(300 units \times Rs. (21.80-10)]		
Process A [(100 units \times Rs.(12.50-2)]		5,000		3,540	
To Selling expenses		19,100			
To Net Profit		$\mathbf{1 , 6 1 , 0 4 0}$			$\mathbf{1 , 6 1 , 0 4 0}$

Note:

1. As mentioned selling expenses are not allocable to process which is debited directly to the P/L A/c.
2. It is assumed that Process A and Process B are not responsibility centres and hence, Process A and Process B have not been credited to direct sales. $\mathrm{P} / \mathrm{L} \mathrm{A} / \mathrm{c}$ is prepared to arriving at profit/loss.

JOINT PRODUCT BY PRODUCT

Q.1) The Sunshine Oil Company purchases crude vegetables oil. It does refining of the same. The refining process results in four products at the split off point: $\mathrm{M}, \mathrm{N}, \mathrm{O}$ and P .

Product O is fully processed at the split off point. Product M, N and P can be individually further refined into 'Super M', 'Super N ' and 'Super P '. In the most recent month (March, 2014), the output at split off point was:

Product M	$3,00,000$ gallons
Product N	$1,00,000$ gallons
Product O	50,000 gallons
Product P	50,000 gallons

The joint cost of purchasing the crude vegetables oil and processing it were Rs. $40,00,000$.

Sunshine had no beginning or ending inventories. Sales of Product O in March, 2014 were Rs. $20,00,000$. Total output of products M, N and P was further refined and then sold. Data related to March, 2014 are as follows:

	Further Processing Costs to Make Super Products	Sales
Super M'	Rs. $80,00,000$	Rs. $1,20,00,000$
Super N'	Rs. $32,00,000$	Rs. $40,00,000$
Super P'	Rs. $36,00,000$	Rs. $48,00,000$

Sunshine had the option of selling products M, N and P at the split off point. This alternative would have yielded the following sales for the March, 2014 production:

Product M	Rs. $20,00,000$
Product N	Rs. $12,00,000$
Product P	Rs. $28,00,000$

You are required to answer:
(i) How the joint cost of Rs. 40,00,000 would be allocated between each product under each of the following methods (a) sales value at split off; (b) physical output (gallons); and (c) estimated net realizable value?
(ii) Could Sunshine have increased its March, 2014 operating profits by making different decisions about the further refining of product M, N or P ? Show the effect of any change you recommend on operating profits.

Solution:

(i) Allocation of Joint Cost by the following methods:
(a) Sales Value at split - off Method

Products	Sales value of the point of split off (Rs.)	Joint cost allocated (Rs.)
M	20,00,000	$\begin{gathered} 10,00,000 \\ \left(\frac{\text { Rs. } 20,00,000}{\text { Rs. } 80,00,000}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
N	12,00,000	$\begin{gathered} 6,00,000 \\ \left(\frac{\text { Rs. } 12,00,000}{\text { Rs. } 80,00,000}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
O	20,00,000	$\begin{gathered} 10,00,000 \\ \left(\frac{\text { Rs. } 20,00,000}{\text { Rs. } 80,00,000}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
P	28,00,000	$\begin{gathered} 14,00,000 \\ \left(\frac{\text { Rs. } 28,00,000}{\text { Rs. } 80,00,000}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
Total	80,00,000	40,00,000

(b) Physical output (gallon) Method

Products	Physical output (in gallon)	Joint cost allocated (Rs.)
M	3,00,000	$\begin{gathered} 24,00,000 \\ \left(\frac{3,00,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
N	1,00,000	$\begin{gathered} \hline 8,00,000 \\ \left(\frac{1,00,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
O	50,000	$\begin{gathered} 4,00,000 \\ \left(\frac{50,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
P	50,000	$\begin{gathered} 4,00,000 \\ \left(\frac{50,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times \text { Rs. } 40,00,000 \end{gathered}$
Total	5,00,000	40,00,000

(c) Estimated Net Realizable Value Method

Products	Sales revenue after further processing (Rs.)	Sales revenue at the point of split off (Rs.)	Further processing costs (Rs.)	Net realizable value (Rs.)	Joint cost allocated (Rs.)
(a)	(b)	(c)	(d)	$\begin{aligned} & \text { (e) }=[(\mathrm{b})- \\ & \text { (d) }] \text { or }(\mathrm{c}) \end{aligned}$	
'Super M^{\prime}	1,20,00,000	-	80,00,000	40,00,000	$\begin{aligned} & 20,00,000 \\ & \left(\frac{\text { Rs. } 40,00,000}{\text { Rs. } 80,00,000}\right) \text { x Rs. } 40,00,000 \end{aligned}$
'Super N^{\prime}	40,00,000	-	32,00,000	8,00,000	$\begin{aligned} & 4,00,000 \\ & \left(\frac{\text { Rs. } 8,00,000}{\text { Rs. } 80,00,000}\right) \text { x Rs. } 40,00,000 \end{aligned}$
'O'	-	20,00,000	-	20,00,000	$\begin{aligned} & 10,00,000 \\ & \left(\frac{\text { Rs. } 20,00,000}{\text { Rs. } 80,00,000}\right) \times \text { Rs. } 40,00,000 \end{aligned}$
$\begin{aligned} & \text { 'Super } \\ & \text { 'P' } \end{aligned}$	48,00,000	-	36,00,000	12,00,000	$\begin{aligned} & 6,00,000 \\ & \left(\frac{\text { Rs. } 12,00,000}{\text { Rs. } 80,00,000}\right) \text { x Rs. } 40,00,000 \end{aligned}$
		Total	1,48,00,000	80,00,000	40,00,000

(ii) Decision about the further refining of Product M, N or P.

Products	M (Rs.)	N (Rs.)	P (Rs.)
Sales revenue after further processing: (A)	$1,20,00,000$	$40,00,000$	$48,00,000$
Sales revenue at the point of split off: (B)	$20,00,000$	$12,00,000$	$28,00,000$
Incremental sales revenue: (C) $=\{(\mathrm{A})-(\mathrm{B})\}$	$1,00,00,000$	$28,00,000$	$20,00,000$
Further processing cost: (D)	$80,00,000$	$32,00,000$	$36,00,000$
Profit (Loss) arising due to further processing: $\{(\mathrm{C})-(\mathrm{D})\}$	$20,00,000$	$(4,00,000)$	$(16,00,000)$

It is apparent from above that further processing of products N and P results in the decrease of the operating profit by Rs. 20,00,000. Hence M/s. Sunshine Oil Company should not resort to further processing of its N and P products. This decision on adoption would increase the operating profits of the company for the month of March, 2014 by Rs. 20,00,000.
(Q.2) Three joint products are produced by passing chemicals through two consecutive processes. Output from process 1 is transferred to process 2 from which the three joint products are produced and immediately sold. The data regarding the processes for April, 2014 is given below:

	Process 1	Process 2
Direct material 2,500 kg. @ Rs. 4 per kg.	Rs. 10,000	-
Direct labour	Rs. 6,250	Rs. 6,900
Overheads	Rs. 4,500	Rs. 6,900
Normal Loss	10% of input	-
Scrap value of loss	Rs. 2 per kg.	-
Output	$2,300 \mathrm{~kg}$.	Joint products
		$\mathrm{A}-900 \mathrm{~kg}$.
		$\mathrm{B}-800 \mathrm{~kg}$.
		$\mathrm{C}-600 \mathrm{~kg}$.

There were no opening or closing stocks in either process and the selling prices of the output from process 2 were:

$$
\begin{array}{ll}
\text { Joint product A } & \text { Rs. } 24 \text { per } \mathrm{kg} . \\
\text { Joint product B } & \text { Rs. } 18 \text { per } \mathrm{kg} . \\
\text { Joint product C } & \text { Rs. } 12 \text { per } \mathrm{kg} .
\end{array}
$$

Required:

(a) Prepare an account for process 1 together with any Loss or Gain Accounts you consider necessary to record the month's activities.
(b) Calculate the profit attributable to each of the joint products by apportioning the total costs from process 2
(i) According to weight of output;
(ii) By the market value of production.

Solution

(a) Process- 1 Account

	Qty. (kg.)	Rate per kg. (Rs.)	Amount (Rs.)		Qty. (kg.)	Rate per kg. (Rs.)	Amount (Rs.)
To Direct material	2,500	4	10,000	By Process 2 (Working Note 1) By Normal Loss	2,300	9^{*}	20,700
To Direct labour To	-	-	6,250	(10\% of input)	250	2	500
Overhead To Abnormal gain	50	-	4,500	9^{*}	450		

Normal Loss Account

	Qty. (kg.)	Rate per kg. (Rs.)	Amount (Rs.)		Qty. (kg.)	Rate per kg. (Rs.)	Amount (Rs.)
To Process-1	250	2	500	By Sales	200	2	400
		By Abnormal gain	50	2	100		
	$\mathbf{2 5 0}$		$\mathbf{5 0 0}$		$\mathbf{2 5 0}$		$\mathbf{5 0 0}$

Abnormal Gain Account

	Qty. (kg.)	Rate per kg. (Rs.)	Amount (Rs.)		Qty. (kg.)	Rate per kg. (Rs.)	Amount (Rs.)
To Normal Loss A/c	50	2	100	By To Costing Profit and Loss Account		350	50
	50		450		50	450	

(b) Statement of Profit

(attributable to each of the Joint Products according to weight of output and market value of production)

Joint products	Output	S.P. (p.u.)	Sales value	Weight of output	Profit/(loss)	Market value of production	Profit/ (loss)
	(kg.)		(Rs.)	(Rs.)	(Rs.)	(Rs.)	(Rs.)
A	900		21,600	$13,500^{*}$	8,100	$17,250^{* *}$	4,350
B	800	18	14,400	12,000	2,400	11,500	2,900
C	600	12	7,200	9,000	$(1,800)$	5,750	1,450
	$\mathbf{2 , 3 0 0}$		$\mathbf{4 3 , 2 0 0}$	$\mathbf{3 4 , 5 0 0}$	$\mathbf{8 , 7 0 0}$	$\mathbf{3 4 , 5 0 0}$	$\mathbf{8 , 7 0 0}$

[^0]
Working Notes:

1. Normal output $=2,500 \mathrm{~kg} .-250 \mathrm{~kg} \cdot(2,500 \mathrm{~kg} . \times 10 \%)=2,250 \mathrm{~kg}$.

Total Cost $=$ Direct material cost + Direct labour cost + Overheads - Recovery from scrap sales

$$
\begin{aligned}
& =\text { Rs. } 10,000+\text { Rs. } 6,250+\text { Rs. } 4,500-\text { Rs. } 500(2,500 \times 10 \% \times \text { Rs. } 2) \\
& =\text { Rs. } 20,250
\end{aligned}
$$

Normal cost (p.u.) $=\frac{\text { Rs. } 20,250}{2,250 \mathrm{~kg}}=$ Rs. 9
2. Joint Cost of three products under Process- 2

	(Rs.)
Transfer of output from process-1	20,700
Direct Labour	6,900
Overhead	6,900
Total	$\mathbf{3 4 , 5 0 0}$

3. Apportionment of joint cost on the basis of weight of output

Joint Products	Output (in kg.)	Apportionment of joint cost on the basis of weight of output
A	900	$\frac{\text { Rs. } 34,500 \times 9}{23}=$ Rs. 13,500
B	800	$\frac{\text { Rs. } 34,500 \times 8}{23}=$ Rs. 12,000
C	600	$\frac{\text { Rs. } 34,500 \times 6}{23}=$ Rs. 9,000

4. Apportionment of Joint Cost on the basis of market value of production

Joint Products	Output	Selling Price (p.u.)	Sale Revenue	Apportionment of Joint Cost on the basis of market value of production
	(In Kg.)	(Rs.)	(Rs.)	
A	900	24	21,600	$\frac{\text { Rs.34,500x3 }}{6}=$ Rs. 17,250
B	800	18	14,400	$\frac{\text { Rs.34,500x2 }}{6}=$ Rs.11,500
C	600	12	7,200	$\frac{\text { Rs.34,500x1 }}{6}=$ Rs.5,750
			$\mathbf{4 3 , 2 0 0}$	$\mathbf{3 4 , 5 0 0}$

(Q.3)

A company manufactures one main product $\left(\mathrm{M}_{1}\right)$ and two by-products B_{1} and B_{2}. For the month of January 2013, following details are available:
Total Cost upto separation Point Rs. 2,12,400

	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$
Cost after separation	-	Rs. 35,000	Rs. 24,000
No. of units produced	4,000	1,800	3,000
Selling price per unit	Rs. 100	Rs. 40	Rs. 30
Estimated net profit as percentage to sales value	-	20%	30%
Estimated selling expenses as percentage to sales value	20%	15%	15%

There are no beginning or closing inventories.
Prepare statement showing:
(i) Allocation of joint cost; and
(ii) Product-wise and overall profitability of the company for January 2013.

Solution:

(i) Statement showing allocation of Joint Cost

Particulars	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$
No. of units Produced	1,800	3,000
Selling Price Per unit (Rs.)	40	30
Sales Value (Rs.)	72,000	90,000
Less: Estimated Profit (B $\left.\mathrm{B}_{1}-20 \% \& \mathrm{~B}_{2}-30 \%\right)$	$(14,400)$	$(27,000)$
Cost of Sales	57,600	63,000
Less: Estimated Selling Expenses $\left(\mathrm{B}_{1}-15 \% \& \mathrm{~B}_{2}-15 \%\right)$	$(10,800)$	$(13,500)$
Cost of Production	46,800	49,500
Less: Cost after separation	$(35,000)$	$(24,000)$
Joint Cost allocated	11,800	25,500

(ii) Statement of Profitability

Particulars	$\mathbf{M}_{\mathbf{1}}$ (Rs.)	$\mathbf{B}_{\mathbf{1}}$ (Rs.)	$\mathbf{B}_{\mathbf{2}}$ (Rs.)
Sales Value (A)	$4,00,000(4,000 \times$ Rs.100)	72,000	90,000
Less:- Joint Cost	$1,75,100(2,12,400-11,800-$	11,800	25,500
	$25,500)$	-	35,000
- Cost after separation	80,000	10,800	13,500
- Selling Expenses (M1-20\%, 15\%)			
(B) $15 \% \& \mathrm{~B}_{2}-$	$2,55,100$	57,600	63,000
Profit (A -B)	$1,44,900$	14,400	27,000

Overall Profit $=$ Rs. $1,44,900$ + Rs. 14,400 + Rs. $27,000=$ Rs. $1,86,300$

SERVICE SECTOR COSTING (OPERATING COSTING)

Q.1) A Mineral is transported from two mines - ' A ' and ' B ' and unloaded at plots in a Railway Station. Mine A is at a distance of 10 km ., and B is at a distance of 15 km . from railhead plots. A fleet of lorries of 5 tonne carrying capacity is used for the transport of mineral from the mines. Records reveal that the lorries average a speed of 30 km . per hour, when running and regularly take 10 minutes to unload at the railhead. At mine ' A ' loading time averages 30 minutes per load while at mine ' B ' loading time averages 20 minutes per load.

Drivers' wages, depreciation, insurance and taxes are found to cost Rs. 9 per hour operated. Fuel, oil, tyres, repairs and maintenance cost Rs. 1.20 per km.

Draw up a statement, showing the cost per tonne-kilometer of carrying mineral from each mine.

Solution:

Statement showing the cost per tonne-kilometre of carrying mineral from each mine
\qquad

	Mine A (Rs.)	Mine B (Rs.)
Fixed cost per trip: (Refer to working note 1) (Driver's wages, depreciation, insurance and taxes)		
A: 1 hour 20 minutes @ Rs. 9 per hour	12.00	
B: 1 hour 30 minutes @ Rs. 9 per hour		13.50
Running and maintenance cost: (Fuel, oil, tyres, repairs and maintenance)		
A: 20 km . Rs. 1.20 per km.	24.00	
B: 30 km . Rs. 1.20 per km.		36.00
Total cost per trip	36.00	49.50
Cost per tonne - km	0.72	0.66
(Refer to working note 2)	$\left(\frac{\mathrm{Rs} .36}{50 \text { tonne-km }}\right)$	$\left(\frac{\mathrm{Rs} .49 .50}{75 \text { tonne-km }}\right)$

Working notes

Mine- A
Mine- B
(1) Total operated time taken per trip

Running time to \& fro
40 minutes
60 minutes

	$\left(20 \mathrm{~km} . \mathrm{x} \frac{60 \mathrm{minutes}}{30 \mathrm{k} . \mathrm{m} .}\right)$	$\left(30 \mathrm{~km} . \mathrm{x} \frac{60 \text { minutes }}{30 \mathrm{k} . \mathrm{m} .}\right)$
Un-loading time 10 minutes 10 minutes	10 minutes	10 minutes
Loading time 30 minutes 20 minutes	30 minutes	20 minutes
Total operated time 80 minutes or 90 minutes or	80 minutes or	90 minutes or
(2). Effective tones -km .50	1 hour 20 minutes	1 hour 30 minutes
	50	75
	$(5$ tonnes $\times 10 \mathrm{~km})$.	$(5$ tonnes $\times 15 \mathrm{~km})$.

Q.2)

EPS is a Public School having 25 buses each plying in different directions for the transport of its school students. In view of large number of students availing of the bus service, the buses work two shifts daily both in the morning and in the afternoon. The buses are garaged in the school. The workload of the students has been so arranged that in the morning, the first trip picks up senior students and the second trip plying an hour later picks up junior students. Similarly, in the afternoon, the first trip takes the junior students and an hour later the second trip takes the senior students home. The distance travelled by each bus, one way is 16 km . The school works 24 days in a month and remains closed for vacation in May and June. The bus fee, however, is payable by the students for all the 12 months in a year.

The details of expenses for the year 2013-2014 are as under:
Driver's salary - payable for all the 12 in months.
Rs.5,000 per month per driver.
Cleaner's salary payable for all the 12 months Rs.3,000 per month per cleaner (one cleaner has been employed for every five buses).
Licence Fees, Taxes etc.
Insurance Premium
Repairs and Maintenance
Purchase price of the bus
Life of the bus
Rs.2,300 per bus per annum
Rs. 15,600 per bus per annum Rs. 16,400 per bus per annum

Rs.16,50,000 each 16 years
Scrap value Rs. 1,50,000
Diesel Cost
Rs. 18.50 per litre
Each bus gives an average of 10 km . per litre of diesel. The seating capacity of each bus is 60 students. The seating capacity is fully occupied during the whole year.

J.K.SHAH CLASSES

The school follows differential bus fees based on distance traveled as under:

Students picked up and dropped within the range of distance from the school	Bus fee	Percentage of students availing this facility
4 km .	25\% of Full	15\%
8 km .	50\% of Full	30\%
16 km .	Full	55\%

Ignore interest. Since the bus fees has to be based on average cost, you are required to
(i) Prepare a statement showing the expenses of operating a single bus and the fleet of 25 buses for a year.
(ii) Work out average cost per student per month in respect of:
(a) Students coming from a distance of upto 4 km . from the school.
(b) Students coming from a distance of upto 8 km . from the school; and
(c) Students coming from a distance of upto 16 km . from the school.

Solution :

(a)
(i)

EPS Public School

Statement showing the expenses of operating a single bus and the fleet of $\mathbf{2 5}$ buses for a year

Running costs: (A)
Diesel (Refer to working note 1)
56,832
14,20,800
Repairs \& maintenance costs: (B)
16,400
4,10,000
Fixed charges:
Driver's salary
(Rs. $5,000 \times 12$ months)
60,000
15,00,000
Cleaners salary

(Rs.3,000 $\times 1 / 5$ th $\times 12$ months)	7,200	$1,80,000$
Licence fee, taxes etc.	2,300	57,500
Insurance	15,600	$3,90,000$
Depreciation	$\underline{93,750}$	$23,43,750$
Total fixed charges: (C)	$\underline{1,78,850}$	$44,71,250$
Total expenses: $(\mathrm{A}+\mathrm{B}+\mathrm{C})$	$2,52,082$	$63,02,050$

(ii) Average cost per student per month in respect of students coming from a distance of:
(a) 4 km . from the school
$\{$ Rs. 2,52,082 / (354 students $\times 12$ months) $\}($ Refer to Working Note 2)
Rs. 59.34
(b) 8 km . from the school (Rs. 59.34×2)

Rs. 118.68
(c) 16 km . from the school (Rs. 59.34×4)

Rs. 237.36

Working Notes:

1. Calculation of diesel cost per bus:

No. of trips made by a bus each day
Distance travelled in one trip both ways ($16 \mathrm{~km} . \times 2$ trips) 32 km .

Distance traveled per day by a bus ($32 \mathrm{~km} . \times 4$ shifts) 128 km .

Distance traveled during a month ($128 \mathrm{~km} . \times 24$ days) $3,072 \mathrm{~km}$.
Distance traveled per year ($3,072 \mathrm{~km} . \times 10$ months) $30,720 \mathrm{~km}$.
No. of litres of diesel required per bus per year($30,720 \mathrm{~km} . \div 10 \mathrm{~km}$.) 3,072 litres
Cost of diesel per bus per year (3,072 litres \times Rs. 18.50) Rs. 56,832
2. Calculation of number of students per bus:

Bus capacity of 2 trips (60 students $\times 2$ trips) 120 students
$1 / 4$ th fare students $(15 \% \times 120$ students $) \quad 18$ students
$1 / 2$ fare 30% students (equivalent to $1 / 4$ th fare students) 72 students
Full fare 55% students (equivalent to $1 / 4$ th fare students) 264 students
Total 1/4th fare students 354 students
Q.3) A transport company has a fleet of three trucks of 10 tonnes capacity each plying in different directions for transport of customer's goods. The trucks run loaded with goods and return empty. The distance travelled, number of trips made and the load carried per day by each truck are as under:

Truck No.	One way Distance Km	No. of trips per day	Load carried per trip / day tonnes
1	16	4	6
2	40	2	9
3	30	3	8

The analysis of maintenance cost and the total distance travelled during the last two years is as under

Year	Total distance travelled	Maintenance Cost Rs.
1	$1,60,200$	46,050
2	$1,56,700$	45,175

The following are the details of expenses for the year under review:

Diesel
Driver's salary
Licence and taxes
Insurance
Purchase Price per truck
Oil and sundries
General Overhead

Rs. 10 per litre. Each litre gives 4 km per litre of diesel on an average.
Rs. 2,000 per month
Rs. 5,000 per annum per truck
Rs. 5,000 per annum for all the three vehicles
Rs. $3,00,000$, Life 10 years. Scrap value at the end of life is Rs. 10,000.
Rs. 25 per 100 km run.
Rs. 11,084 per annum

The vehicles operate 24 days per month on an average.

Required

(i) Prepare an Annual Cost Statement covering the fleet of three vehicles.
(ii) Calculate the cost per km. run.
(iii) Determine the freight rate per tonne km. to yield a profit of 10% on freight.

Solution:

(i) Annual Cost Statement of three vehicles

	(Rs.)
Diesel $\{(1,34,784 \mathrm{~km} . \div 4 \mathrm{~km}) \times$ Rs. 10 $)($ Refer to Working Note 1)	$3,36,960$
Oil \& sundries $\{(1,34,784 \mathrm{~km} . \div 100 \mathrm{~km}$.$) \times Rs. 25\}$	33,696
Maintenance $\{(1,34,784 \mathrm{~km} . \times$ Rs. 0.25$)+$ Rs. 6,000$\}$ (Refer to Working Note 2)	39,696
Drivers' salary $\{($ Rs. $2,000 \times 12$ months $) \times 3$ trucks $\}$	72,000
Licence and taxes (Rs. $5,000 \times 3$ trucks $)$	15,000
Insurance	5,000
Depreciation $\{($ Rs. $2,90,000 \div 10$ years $) \times 3$ trucks $\}$	87,000
General overhead	$\underline{11,084}$
Total annual cost	$6,00,436$

(ii) Cost per km. run

Cost per kilometer run

$$
\begin{aligned}
& \left.=\frac{\text { Total annual cost of vehicles }}{\text { Total kilometre travelled annually }} \text { (Refer to Working Note } 1\right) \\
& =\frac{R s \cdot 6,00,436}{1,34,784 \mathrm{kms}}=\text { Rs. } 4.4548
\end{aligned}
$$

(iii) Freight rate per tonne km (to yield a profit of $\mathbf{1 0 \%}$ on freight)

Cost per tonne km.
$=\frac{\text { Total annual cost of three vehicles }}{\text { Total effective tonnes kms. per annum }}$ (Refer to Working Note 1)
$=\frac{\text { Rs. } 6,00,436}{5,25,312 \mathrm{kms}}=$ Rs. 1.143
Freight rate per tonne km. $\left(\frac{\text { Rs.1.143 }}{0.9}\right) \times 1=$ Rs.1. 27

Working Notes:

1. Total kilometre travelled and tonnes kilometre (load carried) by three trucks in one year

Truck number	One way distance in kms	No. of trips down)	Total distance covered in $\mathbf{k m}$ per day	Load carried per trip/day in tonnes	Total effective tonnes $\mathbf{k m}$
1	16	4	128	6	384
2	40	2	160	9	720
3	30	3	180	8	720
Total			468		1,824

Total kilometre travelled by three trucks in one year
$(468 \mathrm{~km} . \times 24$ days $\times 12$ months $)=1,34,784$
Total effective tonnes kilometre of load carried by three trucks during one year $(1,824$ tonnes $\mathrm{km} . \times 24$ days $\times 12$ months $)=5,25,312$
2. Fixed and variable component of maintenance cost:

Variable maintenance cost per km
$=\frac{\text { Difference in maintenance cost }}{\text { Difference in distance travelled }}$
$=\frac{\text { Rs. } 46,050-\mathrm{Rs} .45,175}{1,60,200 \mathrm{kms}-1,56,700 \mathrm{kms}}$
$=$ Rs. 0.25
Fixed maintenance cost $=$ Total maintenance cost-Variable maintenance cost

$$
=\text { Rs. } 46,050-1,60,200 \mathrm{kms} \times \text { Rs. } 0.25
$$

$$
=\text { Rs. } 6,000
$$

Q.4) Gopal Milk Co-Operative Society (GMCS) collects raw milk from the farmers of Ramgarh, Pratapgarh and Devgarh panchayats and processes these milk to make various dairy products. GMCS has its own vehicles (tankers) to collect and bring the milk to the processing plant. Vehicles are parked in the GMCS's garage situated within the plant compound.

Following are the some information related with the vehicles:

	Ramgarh	Pratapgarh	Devgarh
No. of vehicles assigned	4	3	5
No. of trips a day	3	2	2
One way distance from the processing plant	24 k.m.	34 k.m.	16 k.m.
Toll tax paid p.m. (Rs.)	2,850	3,020	-

All the 5 vehicles assigned to Devgarh panchayat, were purchased five years back at a cost of Rs. 9,25,000 each. The 4 vehicles assigned to Ramgarh panchayat, were purchased two years back at a cost of Rs. 11,02,000 each and the remaining vehicles assigned to Pratapgarh were purchased last year at a cost of Rs. 13,12,000 each. With the purchase of each vehicle a two years free servicing warranty is provided. A vehicle gives 10 kmpl mileage in the first two year of purchase, 8 kmpl in next two years and 6 kmpl afterwards. The vehicles are subject to depreciation of 10% p.a. on straight line basis irrespective of usage. A vehicle has the capacity to carry 25,000 litres of milk but on an average only 70% of the total capacity is utilized.

The following expenditure is related with the vehicles:
Salary of Driver (a driver for each vehicle) Rs. 18,000 p.m.
Salary to Cleaner (a cleaner for each vehicle) Rs. 11,000 p.m.
Allocated garage parking fee
Rs. 1,350 per vehicle per month
Servicing cost
Rs. 3,000 for every complete 5,000 k.m. run.
Price of diesel per litre
Rs. 58.00
From the above information you are required to calculate
(i) Total operating cost per month for each vehicle. (Take 30 days for the month)
(ii) Vehicle operating cost per litre of milk.

Solution:

(i) Calculation of Operating Cost per month for each vehicle

		Ramgarh	Pratapgarh	Devgarh	Total
A.	Running Costs:				
	Cost of diesel (Working				
	Note-2)	1,25,280	70,992	92,800	2,89,072
-	Servicing cost (Working				
	Note- 3)	9,000	-	3,000	12,000
		1,34,280	70,992	95,800	3,01,072

B. Fixed Costs:

- Salary to drivers

72,000	54,000	90,000
$(4$ drivers \times	$(3$ drivers \times	$(5$ drivers \times
Rs. 18,000)	Rs. 18,000)	Rs. 18,000)

Salary to cleaners	44,000	33,000	55,000	$1,32,000$
	$(4$ cleaners \times	$(3$ cleaners \times	$(5$ cleaners \times	
	Rs. 11,000 $)$	Rs. 11,000)	Rs. 11,000)	

	Note- 4)	36,733	32,800	38,542	1,08,075
-	Toll tax passes	2,850	3,020	-	5,870
		1,60,983	1,26,870	1,90,292	4,78,145
	Total [$\mathrm{A}+\mathrm{B}$]	2,95,263	1,97,862	2,86,092	7,79,217
	ing Cost per veh	73,815.75	65,954	57,218.40	64,934.75

	Note- 4)	36,733	32,800	38,542	1,08,075
-	Toll tax passes	2,850	3,020	-	5,870
		1,60,983	1,26,870	1,90,292	4,78,145
	Total [$\mathrm{A}+\mathrm{B}$]	2,95,263	1,97,862	2,86,092	7,79,217
	ing Cost per veh	73,815.75	65,954	57,218.40	64,934.75

- Allocated garage parking fee 5,400 $(4$ vehicles \times
Rs. 1,350$)$
- Depreciation (Working

16,200
(5 vehicles \times
Rs. 1,350)

$$
\begin{aligned}
& \text { (Rs. } 2,95,263 \div \quad \text { (Rs. } 1,97,862 \div \text { (Rs. } 2,86,092 \div \text { (Rs. } 7,79,217 \div \\
& 4 \text { vehicles) } \quad 3 \text { vehicles) } \quad 5 \text { vehicles) } \quad 12 \text { vehicles) }
\end{aligned}
$$

(ii) Vehicle operating cost per litre of milk
$\frac{\text { Total Operating Cost per month }}{\text { Total milk carried a month }}=\frac{R s .7,79,217}{1,47,00,000 \text { Litres }(\text { Working Note-5) }}=$ Rs. 0.053

Working Notes:

1. Distance covered by the vehicles in a month

Route		Total Distance (in K.M.)
Ramgarh	$(4$ vehicles $\times 3$ trips $\times 2 \times 24 \mathrm{~km} . \times 30$ days $)$	17,280
Pratapgarh	$(3$ vehicles $\times 2$ trips $\times 2 \times 34 \mathrm{~km} . \times 30$ days $)$	12,240
Devgarh	$(5$ vehicles $\times 2$ trips $\times 2 \times 16 \mathrm{~km} . \times 30$ days $)$	9,600

2. Cost of diesel consumption

	Ramgarh	Pratapgarh	Devgarh
Total distance travelled (K.M.)	17,280	12,240	9,600
Mileage per litre of diesel	8 kmpl	10 kmpl	6 kmpl
Diesel consumption (Litre)	2,160	1,224	1,600
	$(17,280 \div 8)$	$(12,240 \div 10)$	$(9,600 \div 6)$
Cost of diesel consumption @ Rs. 58			
per litre (Rs.)	$1,25,280$	70,992	92,800

3. Servicing Cost

	Ramgarh	Pratapgarh	Devgarh
Total distance travelled (K.M.)	17,280	12,240	9,600
Covered under free service warranty	No	Yes	No
No. of services required	3	2	1
	$(17,280 \mathrm{k} . \mathrm{m} . \div$	$(12,240 \mathrm{k} . \mathrm{m} . \div$	$(9,600 \mathrm{k} . \mathrm{m} . \div$
	$\underline{5,000 \mathrm{k} . \mathrm{m} .)}$	$5,000 \mathrm{k} . \mathrm{m})$.	$5,000 \mathrm{k} . \mathrm{m})$.
Total Service Cost (Rs.)	9,000	-	3,000
	(Rs. 3,000 $\times 3)$		(Rs. 3,000 $\times 1)$

4. Calculation of Depreciation

	Ramgarh	Pratapgarh	Devgarh
No. of vehicles	4	3	5
Cost of a vehicle	$11,02,000$	$13,12,000$	$9,25,000$
Total Cost of vehicles	$44,08,000$	$39,36,000$	$46,25,000$
Depreciation per month	36,733	32,800	38,542
	$\left(\frac{\text { Rs. } 44,08,000 \times 10 \%}{12 \text { months }}\right)\left(\frac{\text { Rs. } 39,36,000 \times 10 \%}{12 \text { months }}\right)$		
	$\left(\frac{\text { Rs. } 46,25,000 \times 10 \%}{12 \text { months }}\right)$		

5. Total volume of Milk Carried

Route	Milk Qty. (Litre)	
Ramgarh	$(25,000$ ltr. $\times 0.7 \times 4$ vehicles $\times 3$ trips $\times 30$ days $)$	$63,00,000$
Pratapgarh	$(25,0001$ tr. $\times 0.7 \times 3$ vehicles $\times 2$ trips $\times 30$ days $)$	$31,50,000$
Devgarh	$(25,000 \mathrm{ltr} . \times 0.7 \times 5$ vehicles $\times 2$ trips $\times 30$ days $)$	$52,50,000$
		$1,47,00,000$

CONTRACT COSTING

Q.1) Paramount Engineers are engaged in construction and erection of a bridge under a long-term contract. The cost incurred upto 31.03.2014 was as under:

	Amount (Rs.) in lakhs
Fabrication Costs:	
Direct Materials	280
Direct Labour	100
Overheads	60
Erection Cost to date	440
	110
	550

The contract price is Rs. 11 crores and the cash received on account till 31.03 .2014 was Rs. 6 crores. The technical estimate of the contract indicates the following degree of completion of work. Fabrication - Direct Material - 70\%, Director Labour and Overheads 60\% Erection - 40\%.

You are required to estimate the profit that could be taken to Costing Profit and Loss Account against this partly completed contract as at 31.03.2014.

Solution

Working Notes :

1. Statement showing estimated profit to date and future profit on the completion of contract

Particulars	Cost to date		Further Costs		Total Cost (Rs.) (a) + (b)
	(\%) Completion to date	Amount (Rs.) (a)	(\%) Completion to be done	Amount (Rs.) (b)	
Fabrication costs:					
Direct material	70	280.00	30	120.00	400.00
Direct labour	60	100.00	40	66.67	166.67
Overheads	60	60.00	40	40.00	100.00
Total Fabrication cost (A)		440.00		226.67	666.67
Erection cost: (B)	40	110.00	60	165.00	275.00
Total estimated costs (A +B)		550.00		391.67	941.67
Profit		92.48		65.85	158.33
		642.		48	457.52

2. Profit to date (Notional Profit) and future profit are calculated as below:

$$
\begin{aligned}
& \text { Profit to date (Notional Profit) }
\end{aligned}=\frac{\text { Estimated profit on the whole contract } \times \text { Cost to date }}{\text { Total Cost }}
$$

3. Work certified:
$=$ Cost of the contract to date + Profit to date
$=$ Rs. $550+$ Rs. $92.48=$ Rs. 642.48 lakhs
Q.2) A construction company undertook a contract at an estimated price of Rs. 108 lakhs, which includes a budgeted profit of Rs. 18 lakhs. The relevant data for the year ended 31.03.2014 are as under:

	(Rs. Rs.000)
Materials issued to site	5,000
Direct wages paid	3,800
Plant hired	700
Site office costs	270
Materials returned from site	100
Direct expenses	500
Work certified	10,000
Progress payment received	7,200

A special plant was purchased specifically for this contract at Rs. $8,00,000$ and after use on this contract till the end of 31.02 .2014 , it was valued at Rs. $5,00,000$. This cost of materials at site at the end of the year was estimated at Rs. 18,00,000. Direct wages accrued as on 31.03 .2014 was Rs. $1,10,000$.

Required

Prepare the Contract Account for the year ended 31st March, 2014 and compute the profit to be taken to the Costing Profit and Loss account.
Solution
Contract Account for the year ended 31st March, 2014

		(Rs.Rs.000)		(Rs.Rs. 000)
To Material issued to site	5,000	By Material at site	1,800	
To Direct wages	3,800		By Material returned	100
Add: Outstanding wages	$\underline{110}$	3,910	By Cost of contract	8,780
To Plant hire	700			
To Site office cost	270			
To Direct expenses	500		$\mathbf{1 0 , 6 8 0}$	
To Depreciation (special plant)	300		10,000	
	$\mathbf{1 0 , 6 8 0}$			
To Cost of contract	8,780	By Work certified	$\mathbf{1 0 , 0 0 0}$	
To Profit \& Loss A/c	1,220		$\mathbf{1 0 , 0 0 0}$	

Q.3)

PQR Construction Ltd. commenced a contract on April 1, 2013. The total contract was for Rs. $27,12,500$. It was decided to estimate the total profit and to take to the credit of Costing P \& L A / c the proportion of estimated profit on cash basis which work completed bear to the total contract. Actual expenditure in 2013-14 and estimated expenditure in 2014-15 are given below:

	$\begin{array}{r} \text { 2013-14 } \\ \text { Actual (Rs.) } \end{array}$	$\begin{array}{r} \text { 2014-15 } \\ \text { Estimated (Rs.) } \end{array}$
Material issued	4,56,000	8,14,000
Labour : Paid	3,05,000	3,80,000
: Outstanding at end	24,000	37,500
Plant purchased	2,25,000	-
Expenses : Paid	1,00,000	1,75,000
: Outstanding at the end	-	25,000
: Prepaid at the end	22,500	-
Plant returned to stores (a historical stores)	75,000	1,50,000
		(on Dec. 31 2014)
Material at site	30,000	75,000
Work-in progress certified	12,75,000	Full
Work-in-progress uncertified	40,000	-
Cash received	10,00,000	Full

The plant is subject to annual depreciation @ 20% of WDV cost. The contract is likely to be completed on December 31, 2014.

Required:

(i) Prepare the Contract A / c for the year 2013-14.
(ii) Estimate the profit on the contract for the year 2013-14 on prudent basis which has to be credited to Costing P \& L A/c.

Solution :

PQR Construction Ltd.

Contract A/c
(April 1, 2013 to March 31, 2014)

Particulars	Amount (Rs.)		Particulars		Amount (Rs.)
To Materials Issued		4,56,000	By Plant returned to (Working Note 1)		60,000
To Labour	3,05,000		By Materials at Site		30,000
Add: Outstanding	$\underline{24,000}$	3,29,000	By W.I.P.		
To Plant Purchased		2,25,000	Certified	12,75,000	
To Expenses	1,00,000		Uncertified	40,000	13,15,000
Less: Prepaid	22,500	77,500	By Plant at Site (Working Note 2)		1,20,000
To Notional Profit c/d		4,37,500			
		15,25,000			15,25,000
To Costing Profit \& Loss A/c		4,37,500	By Notional Profit b/d		4,37,500
		4,37,500			4,37,500

PQR Construction Ltd.

Contract A/c

(April 1, 2013 to December 31, 2014)
(For Computing estimated profit)

[^1]
Working Notes

1. Value of the Plant returned to Stores on 31.03.2014

Historical Cost of the Plant returned 75,000
Less: Depreciation @ 20\% of WDV for one year $\quad(15,000)$
60,000
2. Value of Plant at Site 31.03.2014

Historical Cost of Plant at Site (Rs. 2,25,000 - Rs. 75,000) 1,50,000
Less: Depreciation @ 20\% on WDV for one year (30,000)
1,20,000
3. Value of Plant returned to Stores on 31.12.2014

Value of Plant (WDV) on 31.3.2014 1,20,000
Less: Depreciation @ 20\% of WDV for a period of 9 months $\quad(18,000)$ $1,02,000$
4. Expenses Paid for the year 2013-14

Total expenses paid $\quad 1,00,000$
Less: Pre-paid at the end $\quad \underline{(22,500)}$
77,500
5. Profit to be credited to Costing Profit \& Loss \mathbf{A} / \mathbf{c} on March

31,2014 for the Contract likely to be completed on December 31,2014.
Estimated Profit $\times \frac{\text { Work Certified }}{\text { Total Contract Price }} \times \frac{\text { Cash received }}{\text { Work Certified }}$
Rs. $4,32,000 \times \frac{12,75,000}{27,12,500} \times \frac{10,00,000}{12,75,000}$

MATERIAL

Q.1) A company manufactures 5,000 units of a product per month. The cost of placing an order is Rs.100. The purchase price of the raw material is Rs. 10 per kg. The re-order period is 4 to 8 weeks. The consumption of raw materials varies from 100 kg to 450 kg per week, the average consumption being 275 kg . The carrying cost of inventory is 20% per annum.

You are required to calculate
(i) Re-order quantity
(iii) Maximum level
(v) Average stock level

Solution:

(i) Reorder Quantity (ROQ) $=1,196 \mathrm{~kg}$. (Refer to working note)
(ii) Reorder level (ROL) $=$ Maximum usage \times Maximum re-order period
$=\quad 450 \mathrm{~kg} . \times 8$ weeks $=3,600 \mathrm{~kg}$.
(iii) Maximum level $=$ ROL + ROQ $-($ Min. usage \times Min. re-order period $)$
$=\quad 3,600 \mathrm{~kg} .+1,196 \mathrm{~kg} .-(100 \mathrm{~kg} . \times 4$ weeks $)$
$=4,396 \mathrm{~kg}$.
(iv) Minimum level $=$ ROL - (Normal usage \times Normal re-order period $)$
$=\quad 3,600 \mathrm{~kg} .-(275 \mathrm{~kg} . \times 6$ weeks $)$
$=\quad 1,950 \mathrm{~kg}$.
$=\quad \frac{1}{2}($ Maximum level + Minimum level $)$
$=\quad \frac{1}{2}(4,396 \mathrm{~kg} .+1,950 \mathrm{~kg})=3,.173 \mathrm{~kg}$.
OR
$=\quad$ Minimum level $+\frac{1}{2} \mathrm{ROQ}$
$=\quad 1,950 \mathrm{~kg} .+\frac{1}{2} \times 1,196 \mathrm{~kg} .=2,548 \mathrm{~kg}$.

Working Note

Annual consumption of raw material $(\mathrm{A})=(275 \mathrm{~kg} . \times 52$ weeks $) \quad=14,300 \mathrm{~kg}$.
Cost of placing an order (O)
Carrying cost per kg. Per annum $(\mathrm{c} \times \mathrm{i})=\quad$ Rs. $10 \times 20 \%=$ Rs. 2

Economic order quantity (EOQ)
$=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{Cxi}}}$

$$
\sqrt{\frac{2 \times 14,300 \text { kgs. x Rs. } 100}{\text { Rs. } 2}}=1,196 \mathrm{~kg} . \text { (Approx.) }
$$

(Q.2) The quarterly production of a company's product which has a steady market is 20,000 units. Each unit of a product requires 0.5 kg . of raw material. The cost of placing one order for raw material is Rs. 100 and the inventory carrying cost is Rs. 2 per annum. The lead time for procurement of raw material is 36 days and a safety stock of $1,000 \mathrm{~kg}$. of raw materials is maintained by the company. The company has been able to negotiate the following discount structure with the raw material supplier.

Order quantity (kg.)

Discount (Rs.)

Upto 6,000
6,001-8,000 400
$8,001-16,000 \quad 2,000$
$16,001-30,000 \quad 3,200$
$30,001-45,000 \quad 4,000$
You are required to
(i) Calculate the re-order point taking 30 days in a month.
(ii) Prepare a statement showing the total cost of procurement and storage of raw material after considering the discount of the company elects to place one, two, four or six orders in the year.
(iii) State the number of orders which the company should place to minimize the costs after taking EOQ also into consideration.

Solution:

Working notes

1. Annual production (20,000 units per quarter $\times 4$ quarters $)=80,000$ units
2. Raw material required for 80,000 units $(80,000$ units $\times 0.5 \mathrm{~kg})=40,.000 \mathrm{~kg}$.
3. $\mathrm{EOQ}=\sqrt{\frac{2 \times 40,000 \mathrm{kgs} \times \mathrm{Rs} .100}{\text { Rs. } 2}}=2,000 \mathrm{kgs}$.
4. Total cost of procurement and storage when the order size is equal to EOQ or $2,000 \mathrm{~kg}$.

No. of orders ($40,000 \mathrm{~kg} . \div 2,000 \mathrm{~kg}$.)
$=20$ times
Ordering cost (20 orders \times Rs. 100)
$=$ Rs. 2,000
Carrying cost (Rs.) $(1 / 2 \times 2,000 \mathrm{~kg} . \times$ Rs. 2$)$
=Rs. 2,000
Total cost
Rs. 4,000
(i) Re-order point = Safety stock + Lead time consumption

$$
\begin{aligned}
& =1,000 \mathrm{~kg} \cdot+\frac{40,000 \mathrm{~kg} .}{360 \text { days }} \times 36 \text { days } \\
& =1,000 \mathrm{~kg} \cdot+4,000 \mathrm{~kg} .=5,000 \mathrm{~kg} .
\end{aligned}
$$

(ii) Statement showing the total cost of procurement and storage of raw materials
(after considering the discount)

Order size	No. of orders	Total cost of procurement	Average stock	Total cost of storage of raw materials	Discount	Total cost
Kg.		(Rs.)	Kg.	(Rs.)	(Rs.)	(Rs.)
(1)	(2)	(3) $=(2) \times$ Rs 100	(4) $=1 / 2 \times(1)$	(5) $=(4) \times$ Rs. 2	(6)	$(7)=[(3)+(5)-$ (6)
40,000	1	100	20,000	40,000	4,000	36,100
20,000	2	200	10,000	20,000	3,200	17,000
10,000	4	400	5,000	10,000	2,000	8,400
6666.66	6	600	3,333	6,666	400	6,866

(iii) Number of orders which the company should place to minimize the costs after taking EOQ also into consideration is 20 orders each of size $2,000 \mathrm{~kg}$. The total cost of procurement and storage in this case comes to Rs. 4,000, which is minimum.
(Q.3) PQR Ltd., manufactures a special product, which requires 'ZED'. The following particulars were collected for the year 2013-14:
(i) Monthly demand of Zed

7,500 units
(ii) Cost of placing an order

Rs. 500
(iii) Re-order period : 5 to 8 weeks
(iv) Cost per unit
(v) Carrying cost p.a. :
(vi) Normal usage : 500 units per week
(vii) Minimum usage : 250 units per week
(viii) Maximum usage : 750 units per week

Required:

(i) Re -order quantity.
(ii) Re-order level.
(iii) Minimum stock level.
(iv) Maximum stock level.
(v) Average stock level.

Solution :

(i) Re - order quantity $=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{Cxi}}}$

$$
=\sqrt{\frac{2 \times 7,500 \text { units } \times 12 \text { months } \times \text { Rs. } 500}{\text { Rs. } 60 \times 10 \%}}
$$

$$
=3,873 \text { units (Approx) }
$$

(ii) Re-order level
$=$ Maximum re-order period x Maximum usage
$=8$ weeks $\times 750$ units per week $\quad=6,000$ units
(iii) Minimum stock level
$=$ Re-order level - \{Normal usage x Normal re-order period $\}$
$=6,000$ units $-(500$ units x 6.5 weeks $)=2,750$ units
(iv) Maximum stock level
$=$ Re-order level + Re-order quantity - (Minimum usage x Minimum re-order period)
$=6,000$ units $+3,873$ units $-(250$ units $x 5$ weeks $)=8,623$ units
(v) Average stock level
$=1 / 2($ Minimum stock level + Maximum stock level $)$
$=1 / 2(2,750+8,623)=5,686.5$ units or 5,687 units
(Q.4)

Re-order quantity of material ' X ' is $5,000 \mathrm{~kg}$.; Maximum level $8,000 \mathrm{~kg}$.; Minimum usage 50 kg . per hour; minimum re-order period 4 days; daily working hours in the factory is 8 hours. You are required to calculate the re-order level of material ' X '.

Solution:

Maximum Level $=$ Re-order level + Re-order Quantity- $($ Min. usage \times Min. Re-order Period $)$
Re-order Level $=$ Maximum Level $-[$ Re-order Quantity $-($ Min. usage \times Min. Re-order Period $)$

$$
=8,000 \mathrm{~kg} .-[5,000 \mathrm{~kg} .-(400 \mathrm{~kg} * \times 4 \text { days })]=8,000 \mathrm{~kg} .-3,400 \mathrm{~kg} .=4,600 \mathrm{~kg} .
$$

Hence, Re-order level is $4,600 \mathrm{~kg}$.
*Minimum usage per day $=50 \mathrm{~kg} . \times 8$ hours $=400 \mathrm{~kg}$.
(Q.5) Primex Limited produces product ' P '. It uses annually 60,000 units of a material 'Rex' costing Rs. 10 per unit. Other relevant information are:

Cost of placing an order : Rs. 800 per order

Carrying cost
Re-order period
Safety stock
The company operates 300 days in a year.
You are required to calculated:
(i) Economic Order Quantity for material 'Rex'
(ii) Re-order Level
(iii) Maximum Stock Level
(iv) Average Stock Level

Solution :

(i) Economic Order Quantity (E.O.Q)

$$
\begin{aligned}
& =\sqrt{\frac{2 \times \text { Annual requirement of 'Rex' x Orderingcost per order }}{\text { Annual carrying cost per unit per annum }}} \\
& =\sqrt{\frac{2 \times 60,000 \text { units } \times \text { Rs. } 800}{\text { Rs. } 10 \times 15 \%}}=\sqrt{\frac{9,60,00,000}{R s .1 .5}} \\
& =8,000 \text { units }
\end{aligned}
$$

(ii) Re-order Level = Safety Stock $+($ Normal daily Usage \times Re-order period $)$
$=600+\left(\frac{60,000 \text { units }}{300 \text { days }} \times 10\right.$ days $)$
$=600+2,000$
$=2,600$ units
(iii) Maximum Stock Level = E.O.Q (Re-order Quantity) + Safety Stock
$=8,000$ units +600 units
$=8,600$ units
(iv) Average Stock Level $\quad=$ Minimum Stock level $+\frac{1}{2}$ Re-order Quantity
$=600^{*}+\frac{1}{2} 8,000$ units
$=4,600$ units
OR

$$
\begin{aligned}
\text { Average Stock Level } & =\frac{\text { Maximum Stock level }+ \text { Minimum Stock Level }}{2} \\
& =\frac{8,600 \text { units }+600 \text { units }}{2} \\
& =4,600 \text { units } \\
* \text { Minimum Stock Level } & =\text { Re-order level }-(\text { Normal daily usage } \times \text { Re-order period }) \\
& =2,600-\left(\frac{60,000 \text { units }}{300 \text { units }} \times 10 \text { days }\right) \\
& =2,600-2,000 \\
& =600 \text { units }
\end{aligned}
$$

$$
\text { Minimum Stock Level } \quad=\text { Safety Stock level }=600 \text { units }
$$

(Q.6) Following details are related to a manufacturing concern:

Re-order Level	16,000 units
Economic Order Quality	90,000
Minimum Stock Level	100000 units
Maximum Stock Level	190000 units
Average Lead Time	6 days
Difference between minimum lead time and Maximum lead time	4 days

Calculate:

(i) Maximum consumption per day
(ii) Minimum consumption per day

Solution:

Difference between Minimum lead time Maximum lead time $=4$ days
Max. lead time - Min. lead time $=4$ days
Or, Max. lead time $=$ Min. lead time +4 days
Average lead time is given as 6 days i.e.
$\frac{\text { Max. lead time }+ \text { Min. lead time }}{2}=6$ days
Putting the value of (i) in (ii),
$\underline{\text { Max. lead time + Min. lead time }}$

$$
=6 \text { days }
$$

Or, Min. lead time +4 days + Min. lead time $=12$ days
Or, 2 Min. lead time $=8$ days
Or, Minimum lead time $\frac{8 \text { days }}{2}=4$ days
Putting this Minimum lead time value in (i), we get
Maximum lead time $=4$ days +4 days $=8$ days
(i) Maximum consumption per day:

Re-order level $=$ Max. Re-order period \times Maximum Consumption per day
$1,60,000$ units $=8$ days \times Maximum Consumption per day
Or, Maximum Consumption per day $=\frac{1,60,000 \text { units }}{8 \text { days }}=20,000$ units

(ii) Minimum Consumption per day:

Maximum Stock Level =
Re-order level + Re-order Quantity $-($ Min. lead time \times Min. Consumption per day)

Or, 1,90,000 units $=1,60,000$ units $+90,000$ units $-(4$ days \times Min. Consumption per day $)$ Or, 4 days \times Min. Consumption per day $=2,50,000$ units $-1,90,000$ units
Or, Minimum Consumption per day $=\frac{60,000 \text { units }}{4 \text { days }}=15,000$ units

EMPLOYEE COST \& DIRECT EXPENSES

Q.1) ZED Limited is working by employing 50 skilled workers, it is considering the introduction of incentive scheme-either Halsey scheme (with 50% bonus) or Rowan scheme of wage payment for increasing the labour productivity to cope up the increasing demand for the product by 40%. It is believed that proposed incentive scheme could bring about an average 20% increase over the present earnings of the workers; it could act as sufficient incentive for them to produce more.
Because of assurance, the increase in productivity has been observed as revealed by the figures for the month of April, 2014.
Hourly rate of wages (guaranteed) Rs. 30
Average time for producing one unit by one worker at the previous
performance (This may be taken as time allowed)
1.975 hours

Number of working days in the month
Number of working hours per day of each worker
8
Actual production during the month
6,120 units

Required:

(i) Calculate the effective rate of earnings under the Halsey scheme and the Rowan scheme.
(ii) Calculate the savings to the ZED Limited in terms of direct labour cost per piece.
(iii) Advise ZED Limited about the selection of the scheme to fulfill their assurance.

Solution:

Working notes:

1. Computation of time saved (in hours) per month:
(Standard production time for 6,120 units) - (Actual time taken by the workers)
$=\quad(6,120$ units $\times 1.975$ hours $)-(24$ days $\times 8$ hours per day $\times 50$ skilled workers $)$
$=\quad(12,087$ hours $-9,600$ hours $)$
$=\quad 2,487$ hours
2. Computation of bonus for time saved under Halsey and Rowan schemes:

$$
\text { Time saved } \quad=2,487 \text { hours }
$$

(Refer to working note 1)
Wage rate per hour
Bonus under Halsey Scheme
(With 50\% bonus)
Bonus under Rowan Scheme
$=$ Rs. 30
$=1 / 2 \times 2,487$ hours \times Rs. 30
$=$ Rs. 37,305
$=\frac{\text { Time saved }}{\text { Time allowed }} \times$ Time taken \times Rate per hour
$=\frac{2,487 \text { hours }}{12,087 \text { hours }} \times 9,600$ hours \times Rs. 30
$=$ Rs. 59,258.38
(i) Computation of effective rate of earnings under the Halsey and Rowan scheme:

Total earnings (under Halsey scheme) (Refer to working note 2)
$=$ Time wages + Bonus
$=(24$ days $\times 8$ hours +50 skilled workers \times Rs. 30$)+$ Rs. 37,305
$=$ Rs. $2,88,000+$ Rs. $37,305=$ Rs. $3,25,305$
Total earnings (under Rowan scheme) (Refer to working note 2)
$=$ Time wages + Bonus
$=$ Rs. $2,88,000+$ Rs. $59,258.38$
$=$ Rs. $3,47,258.38$
Effective rate of earnings per hour (under Halsey Plan) $=\frac{\text { Rs.3,25,305 }}{9,600 \text { hours }}=$ Rs. 33.89
Effective rate of earnings per hour (under Rowan Plan) $=\frac{\text { Rs.3,47,258.38 }}{9,600 \text { hours }}=$ Rs. 36.17
(ii) Savings to the ZED Ltd., in terms of direct labour cost per piece:
(Rs.)
Direct labour cost (per unit) under time wages system
(1.975 hours per unit \times Rs. 30)

Direct labour cost (per unit) under Halsey Plan $\left(\frac{R s .3,25,305}{6,120 \text { units }}\right)$
Direct labour cost (per unit) under Rowan Plan $\left(\frac{R s .3,47,258.38}{6,120 \text { units }}\right)$
Saving of direct labour cost under:
Halsey Plan (Rs. 59.25 - Rs. 53.15) Rs. 6.10
Rowan Plan (Rs. 59.25 - Rs. 56.74) Rs. 2.51
(iii) Advise to ZED Ltd.: (about the selection of the scheme to fulfill assurance) Halsey scheme brings more savings to the management of ZED Ltd., over the present earnings of Rs. $2,88,000$ but the other scheme i.e. Rowan scheme fulfils the promise of 20% increase over the present earnings of Rs. 2,88,000 by paying 20.58% in the form of bonus. Hence Rowan Plan may be adopted.
(Q.2) Two workmen, Andrew and Baker, produce the same product using the same material. Andrew is paid bonus according to Halsey plan, while Baker is paid bonus according to Rowan plan. The time allowed to manufacture the product is 100 hours. Andrew has taken 60 hours and Baker has taken 80 hours to complete the product. The normal hourly rate of wages of workman Andrew is Rs. 24 per hour. The total earnings of both the workers are same. Calculate normal hourly rate of wages of workman Baker.

Solution:

	Andrew	Baker
Time allowed (Hours)	100	100
Time taken (Hours)	60	80
Time saved (Hours)	40	20
Let the rate of wages of the worker Baker is 'L' per hour		
Normal Wages	Rs. 1,440	Rs. 80 L
	(60 hours \times Rs.24)	(80 hours \times L)
Bonus	Rs. 480*	Rs. 16 L**
Total earnings	Rs. 1,920	Rs. 96 L

* Bonus under Halsey system $=\frac{1}{2} \mathrm{x}$ Time saved x Rate per hour

$$
=\frac{1}{2} \times 40 \text { hours } \times \text { Rs. } 24=\text { Rs. } 480
$$

$$
\begin{aligned}
* * \text { Bonus under Rowan system } & =\frac{\text { Time Saved }}{\text { Time allowed }} \times \text { Time worked } \times \text { Rate per hour } \\
& =\frac{20 \text { hours }}{100 \text { hours }} \times 80 \text { hours } \times L=16 \mathrm{~L}
\end{aligned}
$$

According to the problem,
Total earnings of Andrew $=$ Total earnings of Baker
Rs. $1,920=$ Rs. 96 L
$\mathrm{L} \quad=\quad$ Rs. 20
Therefore, Hourly rate of wages of Baker is Rs. 20 per hour.
(Q.3) Standard Time for a job is 90 hours. The hourly rate of guaranteed wages is Rs. 50. Because of the saving in time a worker A gets an effective hourly rate of wages of Rs. 60 under Rowan premium bonus system. For the same saving in time, calculate the hourly rate of wages a worker B will get under Halsey premium bonus system assuring 40% to worker.

Solution:

Increase in hourly rate of wages under Rowan Plan is Rs. 10 i.e.(Rs. 60 - Rs. 50)
This is Equal to $\frac{\text { Time Saved }}{\text { Time Allowed }} \mathrm{x}$ Rate per hour (Please refer Working Note)
Or, $\frac{\text { Time Saved }}{\text { Time Allowed }} \times$ Rs. $50=$ Rs. 10
Or, $\frac{\text { Time Saved }}{90 \text { hours }} \times$ Rs. $50=$ Rs. 10

J.K.SHAR CLASSES

Therefore, Time Saved $=18$ hours and Time Taken is 72 hours i.e. (90 hours -18 hours)
Effective Hourly Rate under Halsey System:
Time saved $=18$ hours
Bonus @ $40 \%=18$ hours $\times 40 \% \times$ Rs. $50=$ Rs. 360
Total Wages $=($ Rs. 50×72 hours + Rs. 360$)=$ Rs. 3,960
Effective Hourly Rate $=$ Rs. $3,960 \div 72$ hours $=$ Rs. 55

Working Note:

Effective hourly rate
$=\frac{(\text { Time Taken } x \text { Rate per hour })+\frac{\text { Time Taken }}{\text { Time Allowed }} \times \text { Time Saved } \times \text { Rate per hour }}{\text { Time Taken }}$
Or, Rs. $60=\frac{\text { Time Taken } x \text { Rate per hour }}{\text { Time Taken }}+\frac{\frac{\text { Time Taken }}{\text { Time Allowed }} \times \text { Time Saved } x \text { Rate per hour }}{\text { Time Taken }}$ or, Rs. 60 -
$\frac{\text { Time Taken } \mathrm{x} \text { Rate per hour }}{\text { Time Taken }}=\frac{\text { Time Taken }}{\text { Time Allowed }} \mathrm{x}$ Time Saved x Rate per hour $=\frac{1}{\text { Time Taken }}$
Or, Rs. $60-$ Rs. $50=\frac{\text { Time Saved }}{\text { Time Allowed }} \times$ Rs. 50
(Q.4) The management of a company wants to formulate an incentive plan for the workers with a view to increase productivity. The following particulars have been extracted from the books of company:
Piece Wage rate Rs. 10
Weekly working hours 40
Hourly wages rate Rs. 40 (guaranteed)
Standard/normal time per unit 15 minutes.
Actual output for a week:
Worker A: 176 pieces
Worker B: 140 pieces
Differential piece rate: 80% of piece rate when output below normal and 120% of piece rate when output above normal.

Under Halsey scheme, worker gets a bonus equal to 50% of Wages of time saved.

Calculate:

(i) Earning of workers under Halsey's and Rowan's premium scheme.
(ii) Earning of workers under Taylor's differential piece rate system and Emerson's efficiency plan.

Solution:

Calculation of earnings for workers under different incentive plans:
(i) Halsey's Premium Plan:

	Worker - A	Worker - B
Actual time taken	40 hours	40 hours
Standard time for actual	44 hours	35 hours
Production	$\left(\frac{176 \text { pcs x } 15 \mathrm{Min} .}{60 \mathrm{~min}}\right)$	$\left(\frac{140 \mathrm{pcs} \mathrm{x} 15 \mathrm{~min} .}{60 \mathrm{~min} .}\right)$

Minimum Wages

Bonus

Earning
Rowan's Premium Plan:
Minimum Wages (as above)
Bonus

Rs. 1,600	Rs. 1,600
$=$ Rs. 145.45	No bonus

$$
\left(\frac{4 \text { Hours }}{44 \text { Hours }} \times 40 \text { hours x Rs. } 40\right)
$$

Earning

Rs. 1,745.45
Rs. 1,600

(ii) Taylor's differential Piece rate

Efficiency
110% 87.5\%

$$
\left(\frac{176 \mathrm{pcs}}{160 \mathrm{pcs}} \times 100\right) \quad\left(\frac{140 \mathrm{pcs}}{160 \mathrm{pcs}} \times 100\right)
$$

Earning
Rs.2,112
Rs. 1,120
(Rs.10x120\%x176 pcs) (Rs.10x80\%x140 pcs.)

Emerson's efficiency Plan

Time Wages	1,600	1,600
	(Rs. 40×40 hours)	(Rs. 40×40 hours)
Bonus	480	320

$$
(20+10) \% \text { of (Rs. } 40 \times 40 \mathrm{hrs}) \quad(20 \% \text { of } 1,600)
$$

Earning
Q.5)Two workers ' A ' and ' B ' produce the same product using the same material. Their normal wage rate is also the same. ' A ' is paid bonus according to Rowan scheme while ' B ' is paid bonus according to Halsey scheme. The time allowed to make the product is 50 hours. ' A ' takes 30 hours while ' B ' takes 40 hours to complete the product. The factory overhead rate is Rs. 5 per person-hour actually worked. The factory cost of product manufactured by ' A ' is Rs.3,490 and for product manufactured by ' B ' is Rs.3,600.

Required:

(i) Compute the normal rate of wages.
(ii) Compute the material cost.
(iii) Prepare a statement comparing the factory cost of the product as made by two workers.

Solution:

Workings:

1. Let ' M ' be the cost of material and ' L ' be the normal rate of wages per hour

	Worker A (Rs.)	Worker B (Rs.)
Material cost	M	M
Labour wages	30 L	40 L
Bonus	$12 \mathrm{~L}^{*}$	$5 \mathrm{~L}^{* *}$
Overheads (30 hours \times Rs.5); (40 hours \times Rs.5)	150	200
Factory cost		
$\{\mathrm{M}+(30 \mathrm{~L}+12 \mathrm{~L})+150=3,490\}$	$\mathrm{M}+42 \mathrm{~L}=3,340 \ldots \ldots . .(\mathrm{i})$	
$\{\mathrm{M}+(40 \mathrm{~L}+5 \mathrm{~L})+200=3,600\}$	$\mathrm{M}+45 \mathrm{~L}=3,400 \ldots$. (ii)	

* Bonus under Rowan system $=\frac{\text { Time saved }}{\text { Time allowed }}$ Time worked Rate per hour

$$
=\frac{20 \text { hours }}{50 \text { hours }} \times 30 \text { hours } \times \mathrm{L}
$$

** Bonus under Halsey system $\quad=\frac{1}{2} \mathrm{x}$ Time saved x Rate per hour

$$
=\frac{1}{2} \times 10 \text { hours } \times \mathrm{L}=5 \mathrm{~L}
$$

2. Solving (i) and (ii) to get the value of ' M ' and ' L '
$\mathrm{M}+42 \mathrm{~L}=3,340$.
$\underline{M}+45 \mathrm{~L}=3,400$.
$-3 \mathrm{~L}=-60$
$\mathrm{L} \quad=20$
By substituting the value of ' L ' in (i), we will get the value of M
$\mathrm{M}+42 \times 20=3,340$ or, $\mathrm{M}=2,500$
(i) Normal rate of wages is Rs. 20 per hour. (Working Note - 2)
(ii) Cost of materials $=$ Rs. 2,500. $($ Working Note -2$)$
(iii) Comparative Statement of factory cost

	Worker A (Rs.)	Worker B (Rs.)
Material cost	2,500	2,500
Wages $(30$ hours \times Rs. 20); $(40$ hours \times Rs. 20)	600	800
Bonus $(12 \times 20) ;(5 \times 20)$	240	100
Overheads $(30$ hours \times Rs. 5); $(40$ hours \times Rs. 5)	150	200
Factory cost	3,490	3,600

BUDGETARY CONTROL

Q.1) Following is the sales budget for the first six months of the year 2014 in respect of PQR Ltd. :

Month :	Jan.	Feb.	March	April	May	June
Sales (units) :	10,000	12,000	14,000	15,000	15,000	16,000

Finished goods inventory at the end of each month is expected to be 20% of budgeted sales quantity for the following month. Finished goods inventory was 2,700 units on January 1, 2014. There would be no work-in-progress at the end of any month.

Each unit of finished product requires two types of materials as detailed below:
Material X: 4 kg. @ Rs. 10/kg
Material Y: 6 kg. @ Rs. 15/kg
Material on hand on January 1, 2014 was $19,000 \mathrm{~kg}$. of material X and $29,000 \mathrm{~kg}$. of material Y. Monthly closing stock of material is budgeted to be equal to half of the requirements of next month's production.

Budgeted direct labour hour per unit of finished product is $3 / 4$ hour.
Budgeted direct labour cost for the first quarter of the year 2014 is Rs. 10, 89,000 .
Actual data for the quarter one, ended on March 31, 2014 is as under:
Actual production quantity : 40,000 units
Direct material cost
(Purchase cost based on materials actually issued to production)
Material X : 1,65,000 kg. @ Rs. $10.20 / \mathrm{kg}$.
Material Y : 2,38,000 kg. @ Rs. $15 \cdot 10 / \mathrm{kg}$.
Actual direct labour hours worked : 32,000 hours
Actual direct labour cost : Rs. 13, 12,000

Required :

(a) Prepare the following budgets:
(i) Monthly production quantity for the quarter one.
(ii) Monthly raw material consumption quantity budget from January, 2014 to April, 2014.
(iii) Materials purchase quantity budget for the quarter one.
(b) Compute the following variances:
(i) Material cost variance
(ii) Material price variance
(iii) Material usage variance
(iv) Direct labour cost variance
(v) Direct labour rate variance
(vi) Direct labour efficiency variance

Solution:

(a) (i) Production Budget for January to March 2014
(Quantitative)

	Jan	Feb	Mar	April
Budgeted Sales	10,000	12,000	14,000	15,000
Add: Budgeted Closing Stock (20\% of sales of next month)	2,400	2,800	3,000	3,000
	12,400	14,800	17,000	18,000
Less: Opening Stock	2,700	2,400	2,800	3,000
Budgeted Output	9,700	12,400	14,200	15,000

Total Budgeted Output for the Quarter ended March 31, 2014
$=(9,700+12,400+14,200)=36,300$ units.
(ii) Raw Material Consumption Budget (in quantity)

Month	Budgeted Output (Units)	Material 'X'@4 kg per unit (Kg)	Material 'Y'@ 6 kg per unit (Kg)
January	9,700	38,800	58,200
February	12,400	49,600	74,400
March	14,200	56,800	85,200
April	15,000	60,000	90,000
Total		2,05,200	3,07,800

(iii) Raw Materials Purchase Budget for the Quarter ended March 31, 2014 (in quantity)

	Material X (kg)	Material Y (kg)
Raw material required for production	$1,45,200$	$2,17,800$
Add: Closing Stock of raw material	30,000	45,000
		$1,75,200$
Less: Opening Stock of raw material	19,000	$2,62,800$
	2,000	
Material to be purchased	$1,56,200$	$2,33,800$

(b) Calculation of Material Cost Variance

(a)	(b)
Std Price \times Std Mix \times Std Qty for actual output	Std. Price \times Std. Mix \times Actual Qty.
$\mathrm{X}-10 \times 4 \times 40,000=16,00,000$	$\mathrm{X}-10 \times \frac{4}{10} \times 4,03,000=16,12,000$
$\mathrm{Y}-15 \times 6 \times 40,000=36,00,000$	$\mathrm{Y}-15 \times \frac{6}{10} \times 4,03,000=36,27,000$
$52,00,000$	$52,39,000$

(c)	(d)
Std. Price x Actual Mix x Actual Qty	Actual Price x Actual Mix x Actual Qty.
$\mathrm{X}-10 \times 1,65,000=16,50,000$	$\mathrm{X}-10.20 \times 1,65,000=16,83,000$
$\mathrm{Y}-15 \times 2,38,000=35,70,000$	$\mathrm{Y}-15.10 \times 2,38,000=35,93,800$
$52,20,000$	$52,76,800$

Direct Material Usage Variance $=(a-c)$
$\mathrm{X}-16,00,000-16,50,000=50,000(\mathrm{~A})$
$\mathrm{Y}-36,00,000-35,70,000=30,000(\mathrm{~F})$
$52,00,000-52,20,000=20,000(\mathrm{~A})$

Direct Material Price Variance $=(\mathrm{c}-\mathrm{d})$
$X-16,50,000-16,83,000=33,000(A)$
$\mathrm{Y}-35,70,000-35,93,800=23,800(\mathrm{~A})$
$52,20,000-52,76,800=56,800(\mathrm{~A})$

Direct Material Cost Variance $=(a-d)$
X $-16,00,000-16,83,000=83,000(A)$
$\mathrm{Y}-36,00,000-35,93,800=6,200(\mathrm{~F})$
$52,00,000-52,76,800=76,800(\mathrm{~A})$

Verification:

Direct Material Cost Variance
$=$ Direct Material Usage Variance + Direct Material Price Variance
$=20,000(\mathrm{~A})+56,800(\mathrm{~A})$
$=76,800(\mathrm{~A})$

Alternative Solution (Total basis)

Direct Material Cost Variance $=52,00,000-52,76,800=76,800(A)$
Direct Material Price Variance $=52,20,000-52,76,800=56,800(A)$
Direct Material Usage Variance $=52,20,000-52,00,000=20,000(\mathrm{~A})$

Calculation of Labour Cost Variances:

Budgeted output for the quarter $\quad=36,300$ units
Budgeted direct labour hours $\quad=36,300 \times 3 / 4 \mathrm{hrs}$.
$=27,225$ hours
Standard or Budgeted labour rate per hour
$=\frac{\text { Budgeted direct labour hours }}{\text { Budgeted direct labour cost }}$
$=\frac{R s .10,89,000}{27,225 \text { hours }}=$ Rs. 40

Standard labour hours for actual output:
$=40,000$ units $\times 3 / 4$ hour
$=30,000$ hours
Actual labour hour rate $=\frac{\text { Rs. } 13,12,000}{32,000 \mathrm{hrs}}=$ Rs. 41
Direct Labour Efficiency Variance $=$ Standard Rate \times (Std. hrs - Actual hrs. $)$

$$
\begin{aligned}
& =\text { Rs. } 40 \times(30,000-32,000) \\
& =\text { Rs. } 80,000(\mathrm{~A})
\end{aligned}
$$

Direct Labour Rate Variance $=$ Actual hrs. $\times($ Std. Rate - Actual Rate $)$

$$
\begin{aligned}
& =32,000 \times(40-41) \\
& =\text { Rs. } 32,000(\mathrm{~A})
\end{aligned}
$$

Direct Labour Cost Variance $=($ Std. rate \times Std. hrs. $)-($ Actual rate \times Actual hrs. $)$

$$
\begin{aligned}
& =(40 \times 30,000)-(41 \times 32,000) \\
& =12,00,000-13,12,000 \\
& =1,12,000(\mathrm{~A})
\end{aligned}
$$

Verification:

Direct Labour Cost Variance $=$ Direct Labour Efficiency Variance + Direct Labour Rate Variance

$$
\begin{aligned}
& =\text { Rs. } 80,000(\mathrm{~A})+\text { Rs. } 32,000(\mathrm{~A}) \\
& =1,12,000(\mathrm{~A})
\end{aligned}
$$

(Q.2) Pentax Limited has prepared its expense budget for 20,000 units in its factory for the year 2013 as detailed below:

Rs. per unit

Direct Materials 50
Direct Labour 20
Variable Overhead 15
Direct Expenses 6
Selling Expenses (20\% fixed) 15
Factory Expenses (100% fixed) 7
Administration expenses (100% fixed) 4
Distribution expenses (85% variable) $\underline{12}$
Total Rs. $\underline{\mathbf{1 2 9}}$
Prepare an expense budget for the production of 15,000 units and 18,000 units.

*Selling Expenses: Fixed cost per unit $=$ Rs. $15 \times 20 \%=$ Rs. 3
Fixed Cost $=$ Rs. $3 \times 20,000$ units $=$ Rs. 60,000
Variable Cost Per unit $=$ Rs. $15-$ Rs. $3=$ Rs. 12
**Distribution Expenses: Fixed cost per unit $=$ Rs. $12 \times 15 \%=$ Rs. 1.80
Fixed Cost $=$ Rs. $1.80 \times 20,000$ units $=$ Rs. 36,000
Variable cost per unit $=$ Rs. $12-$ Rs. $1.80=$ Rs. 10.20

A Light Motor Vehicle manufacturer has prepared sales budget for the next few months, and the following draft figures are available:

Month	No. of vehicles
October	4,000
November	3,500
December	4,500
January	6,000
February	6,500

To manufacture a vehicle a standard cost of Rs. 2,85,700 is incurred and sold through dealers at an uniform selling price of Rs. $3,95,600$ to customers. Dealers are paid 12.5% commission on selling price on sale of a vehicle.

Apart from other materials four units of Part-X are required to manufacture a vehicle. It is a policy of the company to hold stocks of Part-X at the end of the each month to cover 40% of next month's production. 4,800 units of Part-X are in stock as on 1st October.

There are 950 nos. of completed vehicles are in stock as on 1st October and it is policy to have stocks at the end of each month to cover 20% of the next month's sales.

You are required to
(a) Prepare Production budget (in nos.) for the month of October, November, December and January.
(b) Prepare a Purchase budget for Part-X (in units) for the months of October, November and December.
(c) Calculate the budgeted gross profit for the quarter October to December.

Solution:

(a) Preparation of Production Budget (in nos.)

	October	November	December	January
Demand for the month (Nos.)	4,000	3,500	4,500	6,000
Add: 20\% of next month's demand	700	900	1,200	1,300
Less: Opening Stock	(950)	(700)	(900)	$(1,200)$
Vehicles to be produced	3,750	3,700	4,800	6,100

(b) Preparation of Purchase budget for Part-X

	October	November	December
Production for the month (Nos.)	3,750	3,700	4,800
Add: 40% of next month's production	1,480	1,920	2,440
	(40\% of 3,700)	(40\% of 4,800)	(40\% of 6,100)
No. of units required for production	5,230	5,620	7,240
	20,920	22,480	28,960
	(5,230 $\times 4$ units)	(5,620 $\times 4$ units)	(7,240 $\times 4$ units)
Less: Opening Stock		$(5,920)$	$(7,680)$
		(1,480 $\times 4$ units)	(1,920 $\times 4$ units)
No. of units to be purchased	16,120	16,560	21,280

(c) Budgeted Gross Profit for the Quarter October to December

	October	November	December	Total
Sales in nos.	4,000	3,500	4,500	12,000
Net Selling Price per unit*	Rs.3,46,150	Rs.3,46,150	Rs. 3,46,150	
Sales Revenue (Rs. in lakh)	13,846	$12,115.25$	$15,576.75$	41,538
Less: Cost of Sales (Rs. in lakh) (Sales unit \times Cost per unit)	11,428	$9,999.50$	$12,856.50$ 34,284	
Gross Profit (Rs. in lakh)	2,418	$2,115.75$	$2,720.25$	7,254

* Net Selling price unit $=$ Rs. 3,95,600 -12.5% commission on Rs. $3,95,600=$ Rs. $3,46,150$
(Q.4) Calculate efficiency and activity ratio from the following data:

$$
\begin{array}{ll}
\text { Capacity ratio } & =75 \% \\
\text { Budgeted output } & =6,000 \text { units } \\
\text { Actual output } & =5,000 \text { units } \\
\text { Standard Time per unit } & =4 \text { hours }
\end{array}
$$

Solution:

Capacity Ratio $\quad=\frac{\text { Actual Hours }}{\text { Budgeted Hours }} \times 100$

75\%
0.75

AH
Efficiency Ratio $=\frac{\text { Actual Output in terms of Standard Hours }}{\text { Actual Working Hours }} \times 100$
$=\frac{5,000 \text { units } \times 4 \text { hours per unit }}{18,000 \text { hours }} \times 100$
$=\quad \frac{20,000 \text { Hours }}{18,000 \text { Hours }} \times 100=111.11 \%$

Activity Ratio
$=\quad \frac{\text { Actual Output in terms of Standard Hours }}{\text { Budgeted Output in terms of standard Hours }} \times 100$
$=\quad \frac{20,000 \text { Units }}{6,000 \text { Units } \times 4 \text { houer per unit }} \times 100$
$=\quad \frac{20,000 \text { Units }}{24,000 \text { Units }} \times 100$
$=83.33 \%$

STANDARD COSTING

Q.1) SB Constructions Limited has entered into a big contract at an agreed price of Rs. 1,50,00,000 subject to an escalation clause for material and labour as spent out on the contract and corresponding details are as follows:

Material:	Standard		Actual	
	Quantity	Rate per Ton	Quantity	Rate per Ton
	(Tons)	(Rs.)	(Tons)	(Rs.)
A	3,000	1,000	3,400	1,100
B	2,400	800	2,300	700
C	500	4,000	600	3,900
D	100	30,000	90	31,500
Labour:	Hours	Hourly Rate	Hours	Hourly Rate
		(Rs.)		(Rs.)
L_{1}	60,000	1556,000	18	
L_{2}	40,000	3038,000	35	

You are required to:
Calculate the following variances and verify them :
(a) Material Cost Variance
(b) Material Price Variance
(c) Material Usage Variance
(d) Labour Cost Variance
(e) Labour Rate Variance
(f) Labour Efficiency Variance.

Solution:

Material Variances

$(\mathbf{S Q} \times \mathbf{S P}$)	(Rs.)	$(\mathbf{A Q} \times \mathbf{A P})$	(Rs.)	$(\mathbf{A Q} \times \mathbf{S P})$	(Rs.)
A-3,000 $\times 1,000$	$=30,00,000$	$3,400 \times 1,100$	= 37,40,000	$3,400 \times 1,000$	$=34,00,000$
B-2,400 $\times 800$	= 19,20,000	$2,300 \times 700$	$=16,10,000$	$2,300 \times 800$	$=18,40,000$
C- $500 \times 4,000$	= 20,00,000	$600 \times 3,900$	= 23,40,000	$600 \times 4,000$	= 24,00,000
D-100×30,000	$=30,00,000$	$90 \times 31,500$	= 28,35,000	$90 \times 30,000$	= 27,00,000
Total	99,20,000		1,05,25,000		1,03,40,000

(a) Material Cost Variance $(\mathrm{MCV})=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$
$=$ Rs. $99,20,000-$ Rs. $1,05,25,000=$ Rs. $6,05,000(\mathrm{~A})$
(b) Material Price Variance $(\mathrm{MPV})=\mathrm{AQ}(\mathrm{SP}-\mathrm{AP})$ or $(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$

$$
=\text { Rs. } 1,03,40,000-\text { Rs. } 1,05,25,000=\text { Rs. } 1,85,000(\mathrm{~A})
$$

(c) Material Usage Variance (MUV) $=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$

Verification, MCV
Or, Rs. 6, 05,000 (A)
Or, Rs. 6, 05,000 (A)
$=$ Rs. $99,20,000-$ Rs. $1,03,40,000=$ Rs. $4,20,000(\mathrm{~A})$
$=\mathrm{MPV}+\mathrm{MUV}$
$=$ Rs. $1,85,000(\mathrm{~A})+$ Rs. $4,20,000(\mathrm{~A})$
$=$ Rs. $6,05,000(\mathrm{~A})$

Labour Variances

$\mathbf{(S H} \times \mathbf{S R})$	$\mathbf{(R s})$.	$\mathbf{(A H \times \mathbf { A R })}$	$\mathbf{(R s .})$	$\mathbf{(A H} \times \mathbf{S R})$	$\mathbf{(R s})$.
$\mathrm{L} 1-60,000 \times 15$	$=9,00,000$	$56,000 \times 18$	$=10,08,000$	$56,000 \times 15$	$=8,40,000$
L2 $-40,000 \times 30$	$=12,00,000$	$38,000 \times 35$	$=13,30,000$	$38,000 \times 30$	$=11,40,000$
Total	$21,00,000$		$23,38,000$		$19,80,000$

(a) Labour Cost Variance $(\mathrm{LCV})=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$

$$
=\text { Rs. } 21,00,000-\text { Rs. } 23,38,000=\text { Rs. } 2,38,000(\mathrm{~A})
$$

(b) Labour Rate Variance $(\mathrm{LRV})=(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$

$$
=\text { Rs. } 19,80,000-\text { Rs. } 23,38,000=\text { Rs. } 3,58,000(\mathrm{~A})
$$

(c) Labour Efficiency Variance $(\mathrm{LEV})=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$

$$
\begin{aligned}
& =\text { Rs. } 21,00,000-\text { Rs. } 19,80,000=\text { Rs. } 1,20,000(\mathrm{~F}) \\
& =\text { LRV }+ \text { LEV } \\
& =\text { Rs. } 3,58,000(\mathrm{~A})+\text { Rs. } 1,20,000(\mathrm{~F}) \\
& =\text { Rs. } 2,38,000(\mathrm{~A})
\end{aligned}
$$

Verification, LCV
Or, Rs. 2,38,000 (A)
Or, Rs. 2,38,000 (A)
Q.2) The standard labour employment and the actual labour engaged in a 40 hours week for a job are as under:

Category of Workers	Standard		Actual	
	No. of workers	Wage Rate per hour (Rs.)	No. of workers	Wage Rate per hour (Rs.)
Skilled	65	45	50	50
Semi-skilled	20	30	30	35
Unskilled	15	15	20	10

Standard output: 2,000 units; Actual output: 1,800 units
Abnormal Idle time 2 hours in the week
Calculate:
(i) Labour Cost Variance
(ii) Labour Efficiency Variance
(iii) Labour Idle Time Variance.

Solution:
Working Note:
Table Showing Standard \& Actual Cost

Worker	Standard Hours (a)	Standard Rate per Hour (b)	Standard Cost for Actual Output (c) $=(\mathbf{a x b})$	Actual Hours Paid (d)	Actual Rate per hour (e)	Actual $\operatorname{Cost}(f)=$ (d) \times (e)	Idle time (g)	Actual hours worked (h) $=(\mathrm{d})-$ (g)
Skilled	$\begin{aligned} & 2,340 \mathrm{hrs} . \\ & {[(65 \mathrm{c}} \\ & \text { workers x } \\ & 40 \mathrm{hrs.} .) / \\ & 2,000 \\ & \text { units)] x } \\ & 1,800 \text { units } \end{aligned}$	Rs. 45	Rs.1,05,300	$\begin{gathered} 2,000 \\ \text { hrs. (50 } \\ \text { workers } \\ \times 40 \\ \text { hrs.) } \end{gathered}$	Rs. 50	Rs.1,00,000	100 hrs . (50 Workers x 2 hrs.)	$\begin{gathered} 1,900 \\ \text { hrs. } \\ (2,000 \\ \text { hrs }- \\ 100 \mathrm{hrs} .) \end{gathered}$
Semi skilled	$\begin{gathered} 720 \mathrm{hrs} . \\ {[(20} \\ \text { Workers x } \\ 40 \text { hrs.) / } \\ 2,000 \\ \text { units)] } \\ \text { x.1,800 } \\ \text { units } \end{gathered}$	Rs. 30	Rs.21,600	$\begin{gathered} 1,200 \\ \text { hrs. (30 } \\ \text { workers } \\ \times 40 \\ \text { hrs.) } \end{gathered}$	Rs. 35	Rs.42,000	60 hrs . (30 Workers x 2 hrs.)	$\begin{gathered} 1,140 \\ \text { hrs. } \\ (1,200 \\ \text { hrs. }-60 \\ \text { hrs. }) \end{gathered}$
Unskilled	$\begin{gathered} 540 \mathrm{hrs} . \\ {[(15} \\ \text { workers x } \\ 40 \mathrm{hrs.} .) / \\ 2,000 \\ \text { units)] x } \\ 1,800 \\ \text { units. } \end{gathered}$	Rs. 15	Rs.8,100	800 hrs . (20 workers $\text { x } 40$ hrs.)	Rs. 10	Rs.8,000	40 hrs . (20 workers x 2 hrs .)	$\begin{gathered} 750 \mathrm{hrs} . \\ (800 \mathrm{hrs} . \\ -40 \\ \text { hrs. }) \end{gathered}$
Total	3,600 hrs.		Rs.1,35,000	$\begin{gathered} 4,000 \\ \text { hrs. } \end{gathered}$		Rs.1,50,000	200 hrs .	$\begin{gathered} 3,800 \\ \text { hrs. } \end{gathered}$

Calculation of Variances

(i) Labour Cost Variance

Skilled worker

Semi-skilled worker

Unskilled Worker

Total
(ii) Labour Efficiency Variance Skilled worker
$=$ Standard Cost for actual output - Actual cost
$=$ Rs.1,05,300 - Rs.1,00,000
$=$ Rs. 5,300 (F)
$=$ Rs. 21,600-Rs. 42,000
$=$ Rs. $20,400(\mathrm{~A})$
$=$ Rs. 8,100 - Rs. 8,000
$=$ Rs. 100 (F)
$=$ Rs. 5,300 (F) + Rs. $20,400(\mathrm{~A})+$ Rs. $100(\mathrm{~F})$
$=$ Rs. 15,000 (A)
$=$ Std. Rate x (Standard hours - Actual hours worked)
$=$ Rs. $45 \times(2,340 \mathrm{hrs} .-1,900 \mathrm{hrs}$. $)$
$=$ Rs.19,800 (F)

Semi-skilled worker	$=$ Rs. $30 \times$ (720 hrs. - 1,140 hrs.)
	= Rs. 12,600 (A)
Unskilled Worker	= Rs. $15 \times$ ($540 \mathrm{hrs} .-760 \mathrm{hrs}$.
	=Rs. 3,300 (A)
Total	$=$ Rs.19,800 (F) + Rs.12,600 (A) + Rs.3,300 (A)
	$=$ Rs.3,900 (F)
Labour Idle Time Variance	$=$ Std. Rate x Idle Time (Hrs.)
Skilled worker	= Rs. $45 \times 100 \mathrm{hrs}$.
	=Rs. 4,500 (A)
Semi-skilled worker	$=$ Rs. $30 \times 60 \mathrm{hrs}$.
	=Rs. 1,800 (A)
Unskilled worker	$=$ Rs. $15 \times 40 \mathrm{hrs} .=$ Rs. 600 (A)
Total	=Rs. 4,500 (A) + Rs. 1,800 (A) + Rs. 600 (A)
	$=$ Rs. 6,900 (A)

(Q.3) SP Limited produces a product 'Tempex’ which is sold in a 10 Kg . packet. The standard cost card per packet of 'Tempex' are as follows:

Direct materials 10 kg @ Rs. 45 per kg 450
Direct labour 8 hours @ Rs. 50 per hour 400
Variable Overhead 8 hours @ Rs. 10 per hour 80
Fixed Overhead $\underline{200}$
1,130
Budgeted output for the third quarter of a year was $10,000 \mathrm{Kg}$. Actual output is $9,000 \mathrm{Kg}$.
Actual cost for this quarter are as follows :
(Rs.)

Direct Materials 8,900 Kg @ Rs. 46 per Kg.	$4,09,400$
Direct Labour 7,000 hours @ Rs. 52 per hour	$3,64,000$
Variable Overhead incurred	72,500
Fixed Overhead incurred	$1,92,000$

You are required to calculate :
(i) Material Usage Variance
(ii) Material Price Variance
(iii) Material Cost Variance
(iv) Labour Efficiency Variance
(v) Labour Rate Variance

J.K.SHAH CLASSES

(vi) Labour Cost Variance
(vii) Variable Overhead Cost Variance
(viii) Fixed Overhead Cost Variance.

Solution:

(i) Material Usage Variance
(ii) Material Price Variance
(iii) Material Cost Variance
(iv) Labour Efficiency Variance
(v) Labour Rate Variance
(vi) Labour Cost Variance
(vii) Variable Cost Variance
(viii) Fixed Overhead Cost Variance
$=$ Std. Price (Std. Quantity - Actual Quantity)
$=$ Rs. 45 ($9,000 \mathrm{~kg}$. $-8,900 \mathrm{~kg}$.)
$=$ Rs. 4,500 (Favourable)
$=$ Actual Quantity (Std. Price - Actual Price)
$=8,900 \mathrm{~kg} .($ Rs. $45-$ Rs. 46$)=$ Rs. 8,900 (Adverse)
$=$ Std. Material Cost - Actual Material Cost
$=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$
$=(9,000 \mathrm{~kg} . \times$ Rs. 45$)-(8,900 \mathrm{~kg} . \times$ Rs. 46$)$
$=$ Rs. $4,05,000-$ Rs. $4,09,400$
$=$ Rs.4,400 (Adverse)
$=$ Std. Rate (Std. Hours - Actual Hours)
$=$ Rs. $50\left(\frac{9,000}{10} \times 8\right.$ hours $-7,000$ hours $)$
$=$ Rs. 50 (7,200 hrs. $-7,000 \mathrm{hrs}$.)
$=$ Rs. 10,000 (Favourable)
$=$ Actual Hours (Std. Rate - Actual Rate)
$=7,000$ hrs. (Rs. $50-$ Rs.52)
$=$ Rs. 14,000 (Adverse)
$=$ Std. Labour Cost - Actual Labour Cost
$=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=(7,200 \mathrm{hrs} . \times$ Rs. 50$)-(7,000 \mathrm{hrs} . \times$ Rs. 52$)$
$=$ Rs. 3,60,000 - Rs. 3,64,000
$=$ Rs. 4,000 (Adverse)
$=$ Std. Variable Cost - Actual Variable Cost
$=(7,200$ hrs. \times Rs. 10$)-$ Rs. 72,500
= Rs. 500 (Adverse)
= Absorbed Fixed Overhead - Actual Fixed Overhead
$=\frac{\text { Rs. } 200}{10 \mathrm{kgs} \text {. }} \mathrm{x} 9,000 \mathrm{kgs} .1,92,000$
$=$ Rs. $1,80,000-$ Rs. $1,92,000=$ Rs. 12,000 (Adverse)
(Q.4) Jigyasa Pharmaceuticals Ltd. is engaged in producing dietary supplement 'Funkids' for growing children. It produces 'Funkids' in a batch of 10 kgs . Standard material inputs required for 10 kgs . of 'Funkids' are as below:

Material	Quantity (in kgs.)	Rate per kg. (in Rs.)
Vita-X	5	110
Proto-D	3	320
Mine-L	3	460

During the month of March, 2014, actual production was $5,000 \mathrm{kgs}$. of 'Funkids' for which the actual quantities of material used for a batch and the prices paid thereof are as under:

Material	Quantity (in kgs.)	Rate per kg. (in Rs.)
Vita-X	6	115
Proto-D	2.5	330
Mine-L	2	405

You are required to calculate the following variances based on the above given information for the month of March, 2014 for Jigyasa Pharmaceuticals Ltd.:
(i) Material Cost Variance;
(ii) Material Price Variance;
(iii) Material Usage Variance;
(iv) Material Mix Variance;
(v) Material Yield Variance.

Solution:

Material	SQ* \times SP	$\mathbf{A Q * *} \times \mathbf{S P}$	$\mathbf{A} \mathbf{Q}^{* *} \times \mathbf{A P}$	RSQ*** \times SP
Vita-X	$\begin{gathered} \text { Rs. } 2,75,000(2,500 \\ \text { kg. } \times \text { Rs. 110 }) \end{gathered}$	$\begin{gathered} \text { Rs. } 3,30,000(3,000 \\ \text { kg. } \times \text { Rs. } 110) \end{gathered}$	$\begin{gathered} \text { Rs. 3,45,000 }(3,000 \\ \text { kg. } \times \text { Rs. 115) } \end{gathered}$	$\begin{gathered} \text { Rs. } 2,62,460(2,386 \\ \text { kg. } \times \text { Rs. } 110) \end{gathered}$
Proto-D	$\begin{gathered} \text { Rs. } 4,80,000(1,500 \\ \text { kg. } \times \text { Rs. } 320) \end{gathered}$	$\begin{gathered} \text { Rs. } 4,00,000(1,250 \\ \text { kg. } \times \text { Rs. } 320) \end{gathered}$	$\begin{gathered} \text { Rs. } 4,12,500(1,250 \\ \mathrm{kg} . \times \text { Rs. } 330) \end{gathered}$	$\begin{gathered} \text { Rs. } 4,58,240(1,432 \\ \text { kg. } \times \text { Rs. } 320) \end{gathered}$
Mine-L	$\begin{gathered} \text { Rs. } 6,90,000(1,500 \\ \text { kg. } \times \text { Rs. } 460) \end{gathered}$	$\begin{gathered} \text { Rs. 4,60,000 }(1,000 \\ \text { kg. } \times \text { Rs. } 460) \end{gathered}$	$\begin{gathered} \text { Rs. 4,05,000 }(1,000 \\ \text { kg. } \times \text { Rs. } 405) \end{gathered}$	$\begin{gathered} \text { Rs. } 6,58,720(1,432 \\ \mathrm{kg} . \times \text { Rs. } 460) \end{gathered}$
Total	Rs. 14,45,000	Rs. 11,90,000	Rs. 11,62,500	Rs. 13,79,420

* Standard Quantity of materials for actual output :

Vita-X $\quad=\frac{5 \mathrm{kgs} .}{10 \mathrm{kgs} .} \times 5,000 \mathrm{kgs} .=2,500 \mathrm{kgs}$.
Proto-D $=\frac{3 \mathrm{kgs} .}{10 \mathrm{kgs} .} \times 5,000 \mathrm{kgs} .=1,500 \mathrm{kgs}$.
Mine-L

$$
=\frac{3 \mathrm{kgs} .}{10 \mathrm{kgs} .} \times 5,000 \mathrm{kgs} .=1,500 \mathrm{kgs} .
$$

** Actual Quantity of Material used for actual output:
Vita-X $\quad=\frac{6 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=3,000 \mathrm{kgs}$.
Proto-D $=\frac{2.5 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=1,250 \mathrm{kgs}$.
Mine-L $\quad=\frac{2 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=1,000 \mathrm{kgs}$.
***Revised Standard Quantity (RSQ):
Vita- $\mathrm{X}=\frac{5 \mathrm{kgs} .}{11 \mathrm{kgs} .} \times 5,250 \mathrm{kgs} .=2,386 \mathrm{kgs}$.
Proto-D $=\frac{3 \mathrm{kgs} .}{11 \mathrm{kgs}} \times 5,250 \mathrm{kgs} .=1,432 \mathrm{kgs}$.
Mine-L $=\frac{3 \mathrm{kgs} .}{11 \mathrm{kgs} .} \times 5,250 \mathrm{kgs} .=1,432 \mathrm{kgs}$.
(i) \quad Material Cost Variance $=($ Std. Qty. \times Std. Price $)-($ Actual Qty. \times Actual Price $)$

Or
$=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$
Vita-X
$=$ Rs. $2,75,000-$ Rs. $3,45,000$
Proto-D
$=$ Rs. $4,80,000-$ Rs. $4,12,500$
Mine-L
$=$ Rs. $6,90,000-$ Rs. $4,05,000$
$=$ Rs. $70,000(\mathrm{~A})$
=Rs. 67,500 (F)
$=\underline{\text { Rs. } 2,85,000(\mathrm{~F})}$
Rs. 2,82,500 (F)
(ii) \quad Material Price Variance $=$ Actual Quantity (Std. Price - Actual Price)

$$
=(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})
$$

Vita-X
$=$ Rs. 3,30,000 - Rs. 3,45,000
Proto-D $=$ Rs. $4,00,000-$ Rs. $4,12,500$
Mine-L
$=$ Rs. $4,60,000-$ Rs. $4,05,000$
$=$ Rs. 15,000 (A)
$=$ Rs. 12,500 (A)
$=$ Rs. $55,000(\mathrm{~F})$
Rs. 27,500 (F)
(iii) Material Usage Variance $=$ Std. Price (Std. Qty. - Actual Qty.)

$$
\mathrm{Or}=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})
$$

Vita-X
$=$ Rs. $2,75,000-$ Rs. $3,30,000$
Proto-D $=$ Rs. $4,80,000-$ Rs. $4,00,000$
Mine-L $=$ Rs. $6,90,000$ - Rs. $4,60,000$
$=$ Rs. $55,000(\mathrm{~A})$
$=$ Rs. 80,000 (F)
$=$ Rs. $2,30,000(\mathrm{~F})$
Rs. $2,55,000(\mathrm{~F})$
(iv) Material Mix Variance $=$ Std. Price $($ Revised Std. Qty. - Actual Qty.)

$$
\mathrm{Or}=(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})
$$

Vita-X = Rs. 2,62,460 - Rs. 3,30,000
Proto-D = Rs. $4,58,240-$ Rs. $4,00,000$
Mine-L $=$ Rs. $6,58,720$ - Rs. $4,60,000$
$=$ Rs. 67,540 (A)
$=$ Rs. $58,240(\mathrm{~F})$
$=$ Rs. $1,98,720(\mathrm{~F})$
$=$ Rs. $1,89,420$ (F)

J.K.SHAF CLASSES

INTER C.A. - COSTING
(v) Material Yield Variance $=$ Std. Price (Std. Qty. - Revised Std. Qty.)

$$
\mathrm{Or}=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{RSQ} \times \mathrm{SP})
$$

Vita-X	$=$ Rs. $2,75,000-$ Rs. $2,62,460$	
Proto-D	$=$ Rs. $4,80,000-$ Rs. $4,58,240$	
Mine-L	$=$ Rs. $6,90,000-$ Rs. $6,58,720$	Rs. $21,760(\mathrm{~F})$
		=Rs. $31,280(\mathrm{~F})$
		=Rs. $65,580(\mathrm{~F})$

(Q.5) Gama Ltd. has furnished the following standard cost data per' unit of production:

Material $10 \mathrm{~kg} @$ Rs. 10 per kg.
Labour 6 hours @ Rs. 5.50 per hour
Variable overhead 6 hours @ Rs. 10 per hour.
Fixed overhead Rs. 4,50,000 per month (Based on a normal volume of 30,000 labour hours.)
The actual cost data for the month of August 2013 are as follows:
Material used $50,000 \mathrm{~kg}$ at a cost of Rs. 5,25,000.
Labour paid Rs. 1,55,000 for 31,000 hours worked
Variable overheads Rs. 2,93,000
Fixed overheads Rs. 4,70,000
Actual production 4,800 units.

Calculate:

(i) Material Cost Variance.
(ii) Labour Cost Variance.
(iii) Fixed Overhead Cost Variance.
(iv) Variable Overhead Cost Variance.

Solution:

Budgeted Production 30,000 hours $\div 6$ hours per unit $=5,000$ units

Budgeted Fixed Overhead Rate
(i) Material Cost Variance
(ii) Labour Cost Variance
$=$ Rs. $4,50,000 \div 5,000$ units $=$ Rs. 90 per unit Or
$=$ Rs. $4,50,000 \div 30,000$ hours $=$ Rs. 15 per hour.
$=($ Std. Qty. \times Std. Price $)-($ Actual Qty. \times Actual Price $)$
$=(4,800$ units $\times 10 \mathrm{~kg} . \times$ Rs.10 $)-$ Rs. $5,25,000$
$=$ Rs. $4.80,000-$ Rs. 5,25,000
$=$ Rs. 45,000 (A)
$=($ Std. Hours \times Std. Rate $)-($ Actual Hours \times Actual rate $)$
$=(4,800$ units $\times 6$ hours \times Rs. 5.50$)-$ Rs. $1,55,000$
$=$ Rs. $1,58,400-$ Rs. $1,55,000$
$=$ Rs. 3,400 (F)
(iii) Fixed Overhead Cost Variance
$=($ Budgeted Rate \times Actual Qty) - Actual Overhead
$=($ Rs. $90 \times 4,800$ units $)-$ Rs. 4,70,000
$=$ Rs. 38,000 (A)
OR $\quad=$ (Budgeted Rate \times Std. Hours $)-$ Actual Overhead
$=$ (Rs. $15 \times 4,800$ units $\times 6$ hours) - Rs. 4,70,000
$=$ Rs. $38,000(\mathrm{~A})$
(iv) Variable Overhead Cost Variance $=($ Std. Rate \times Std. Hours $)-$ Actual Overhead

$$
\begin{aligned}
& =(4,800 \text { units } \times 6 \text { hours } \times \text { Rs. } 10)-\text { Rs. } 2,93,000 \\
& =\text { Rs. } 2,88,00-\text { Rs. } 2,93,000 \\
& =\text { Rs. } 5,000(\mathrm{~A})
\end{aligned}
$$

MARGINAL COSTING

Q.1) A company produces single product which sells for Rs. 20 per unit. Variable cost is Rs. 15 per unit and Fixed overhead for the year is Rs. 6,30,000.

Required:

(a) Calculate sales value needed to earn a profit of 10% on sales.
(b) Calculate sales price per unit to bring BEP down to $1,20,000$ units.
(c) Calculate margin of safety sales if profit is Rs. 60,000 .

Solution:

(a) Suppose Sales units are x then
$S=V+F+P$
($\mathrm{S}=$ Sales ; $\mathrm{V}=$ Variable Cost; $\mathrm{F}=$ Fixed Cost; $\mathrm{P}=$ Profit)
Rs. $20 \mathrm{x}=$ Rs. $15 \mathrm{x}+$ Rs. $6,30,000+$ Rs. 2 x
Rs. $20 \mathrm{x}-$ Rs. $17 \mathrm{x}=$ Rs. $6,30,000$
$\therefore \mathrm{x}=\frac{6,30,000}{3}=2,10,000$ units
Sales value $=2,10,000$ units x Rs. $20=$ Rs. $42,00,000$ to earn a profit of 10% on sales.
(b) Sales price to bring down BEP to $1,20,000$ units
B.E.P $($ Units $)=\frac{\text { Fixed Cost }}{\text { Contribution per unit }}$

Or, Contribution per unit $=\frac{R s .6,30,000}{1,20,000 \text { units }}=$ Rs. 5.25
So, Sales Price $=$ Rs. 15 + Rs. $5.25=$ Rs. 20.25
(c) Margin of Safety Sales $=\frac{\text { Profit }}{\text { P/V ratio }}$ Or, $\frac{\text { Rs. } 60,000}{\text { P/V Ratio }}$
where, P / V Ratio $=\frac{\text { Contribution per unit }}{\text { Sales Price }} \times 100$ Or, $\frac{\text { Rs. } 5}{\text { Rs. } 20} \times 100=25 \%$
Margin of Safety Sales $=\frac{\text { Rs. } 60,000}{25 \%}=$ Rs.2,40,000
So if profit is Rs. 60,000, margin of safety sale will be Rs. 2,40,000.
Q.2) PQ Ltd. reports the following cost structure at two capacity levels:

	(100\% capacity)	(75\% capacity)
	2,000 units	1,500 units
Production overhead I	Rs. 3 per unit	Rs. 4 per unit
Production overhead II	Rs. 2 per unit	Rs. 2 per unit

If the selling price, reduced by direct material and labour is Rs. 8 per unit, what would be its break-even point?

Solution:

Computation of Break-even point in units:

	$\mathbf{2 , 0 0 0}$ units	$\mathbf{1 , 5 0 0}$ units
Production Overhead I: Fixed Cost (Rs.)	6,000 $(2,000$ unit x Rs. 3)	6,000 $(1,500$ unit x Rs. 4)
Selling price - Material and labour (Rs.) (A)	8	8
Production Overhead II (Variable Overhead) (B)	2	2
Contribution per unit (A) - (B)	6	6

Break-even point $\frac{\text { Fixed Cost }}{\text { Contribution per unit }}=\frac{\text { Rs. } 6,000}{\text { Rs. } 6}=1,000$ units
Q.3) A Company sells two products, J and K. The sales mix is 4 units of J and 3 units of K. The contribution margins per unit are Rs. 40 for J and Rs. 20 for K. Fixed costs are Rs. 6,16,000 per month. Compute the break-even point.

Solution:

Let $\quad 4 \mathrm{x}=$ No. of units of J
Then $3 x=n o$. of units of K
BEP in x units $\quad=\left(\frac{\text { Fixed Cost }}{\text { Contribution }}\right)=\frac{R s .6,16,000}{(4 x \mathrm{x} R s .40)+(3 x \times R s .20)}$
Or,

$$
x=\frac{\text { Rs. } 6,16,000}{\text { Rs. } 220}=2,800 \text { units }
$$

Break- even point of Product $\mathrm{J}=4 \times 2,800=11,200$ units
Break even point of Product $\mathrm{K}=3 \times 2,800=8,400$ units
Q.4) The following figures are related to LM Limited for the year ending 31st March, 2014 :

Sales - 24,000 units @ Rs. 200 per unit;
P/V Ratio 25% and Break-even Point 50% of sales.
You are required to calculate:
(i) Fixed cost for the year
(ii) Profit earned for the year
(iii) Units to be sold to earn a target net profit of Rs. $11,00,000$ for a year.
(iv) Number of units to be sold to earn a net income of 25% on cost.
(v) Selling price per unit if Break-even Point is to be brought down by 4,000 units.

Solution:

Break- even point (in units) is 50% of sales i.e. 12,000 units.
Hence, Break- even point (in sales value) is 12,000 units x Rs. $200=$ Rs. $24,00,000$
(i) We know that Break even sales $=\frac{\text { Fixed Cost }}{\mathrm{P} / \mathrm{V} \text { ratio }}$

Or, Rs. 24,00,000
Or, Fixed Cost
$=\frac{\text { Fixed Cost }}{25 \%}$
$=$ Rs. $24,00,000 \times 25 \%$
$=$ Rs. $6,00,000$
So Fixed Cost for the year is Rs. $6,00,000$
(ii) Contribution for the year $=(24,000$ units \times Rs. 200 $) \times 25 \%$

	$=$ Rs. $12,00,000$
Profit for the year	$=$ Contribution - Fixed Cost
	$=$ Rs. $12,00,000-$ Rs. $6,00,000$
	$=$ Rs. $6,00,000$

(iii) Target net profit is Rs. 11,00,000

Hence, Target contribution $=$ Target Profit + Fixed Cost
$=$ Rs. $11,00,000+$ Rs. $6,00,000$
$=$ Rs. $17,00,000$
Contribution per unit $=25 \%$ of Rs. $200=$ Rs. 50 per unit
No. of units $=\frac{\text { Rs. } 17,00,000}{R s .50 \text { per unit }}=34,000$ unit
So, 34,000 units to be sold to earn a target net profit of Rs. 11,00,000 for a year.
(iv) Net desired total Sales (Number of unit \times Selling price) be x then desired profit is 25% on Cost or 20% on Sales i.e. 0.2 x
Desired Sales $=\frac{\text { Fixed Cost }+ \text { Desired Profit }}{\text { P/.V Ratio }}$
$x \quad=\frac{6,00,000+0.2 x}{25 \%}$
or, $0.25 \mathrm{x}=6,00,000+0.2 \mathrm{x}$
or, $0.05 \mathrm{x}=6,00,000$
or, $x \quad=$ Rs. $1,20,00,000$
No. of units to be sold - $\frac{\text { Rs. } 1,20,00,000}{R s .200}=60,000$ units
(v) If Break- even point is to be brought down by 4,000 units then Break-even point will be 12,000 units $-4,000$ units $=8,000$ units
Let Selling price be Rs. x and fixed cost and variable cost per unit remain unchanged i.e.
Rs. 6,00,000 and Rs. 150 respectively.
Break even point: Sales revenue $=$ Total cost
$8,000 x=8,000 \times$ Rs. $150+$ Rs. $6,00,000$
Or, $8,000 x=$ Rs. $12,00,000+$ Rs. $6,00,000$
Or, $x=\frac{\text { Rs. } 18,00,000}{8,000}=$ Rs. 225
\therefore Selling Price should be Rs. 225
Hence, selling price per unit shall be Rs. 225 if Break-even point is to be brought down by 4,000 units.
Q.5) Arnav Ltd. manufacture and sales its product R-9. The following figures have been collected from cost records of last year for the product R-9:

Elements of Cost	Variable Cost portion	Fixed Cost
Direct Material	30% of Cost of Goods Sold	-
Direct Labour	15% of Cost of Goods Sold	-
Factory Overhead	10% of Cost of Goods Sold	Rs. 2,30,000
General \& Administration Overhead	2% of Cost of Goods Sold	Rs. 71,000
Selling \& Distribution Overhead	4% of Cost of Sales	Rs. 68,000

Last Year 5,000 units were sold at Rs. 185 per unit. From the given data find the followings:
(a) Break-even Sales (in rupees)
(b) Profit earned during last year
(c) Margin of safety (in \%)
(d) Profit if the sales were 10% less than the actual sales.

Solution:

Working Notes:

(i) Calculation of Cost of Goods Sold (COGS):

$$
\begin{aligned}
\text { COGS }= & \{(\text { DM- 0.3 COGS })+(\text { DL- 0.15 COGS })+(\mathrm{FOH}-0.10 \mathrm{COGS}+ \\
& \text { Rs. } 2,30,000)+(\text { G\&AOH- } 0.02 \text { COGS }+ \text { Rs. } 71,000)\} \\
\text { Or COGS }= & 0.57 \text { COGS }+ \text { Rs. } 3,01,000 \\
\text { Or COGS } \quad= & \frac{\text { Rs. } 3,01,000}{0.43}=\text { Rs. } 7,00,000
\end{aligned}
$$

(ii) Calculation of Cost of Sales (COS):

$$
\begin{array}{ll}
\mathrm{COS} & =\mathrm{COGS}+(\mathrm{S} \& \mathrm{DOH}-0.04 \mathrm{COS}+\text { Rs. } 68,000) \\
\text { Or COS } & =\text { Rs. } 7,00,000+(0.04 \mathrm{COS}+\text { Rs. } 68,000) \\
\text { Or COS } & =\frac{\text { Rs. } 7,68,000}{0.96}=\text { Rs.8,00,000 }
\end{array}
$$

(iii) Calculation of Variable Costs:

Direct Material-

$$
\begin{array}{r}
(0.3 \times \text { Rs. 7,00,000) } \\
(0.15 \times \text { Rs. } 7,00,000) \\
(0.10 \times \text { Rs. } 7,00,000) \\
(0.02 \times \text { Rs. } 7,00,000) \\
(0.04 \times \text { Rs. } 8,00,000)
\end{array}
$$

Direct Labour-
Factory Overhead-
General \& Administration OH-
Selling \& Distribution OH

Rs. 2,10,000
Rs. 1,05,000
Rs. 70,000
Rs. 14,000
Rs. 32,000
Rs. 4,31,000
(iv) Calculation of total Fixed Costs:

Factory OverheadRs. 2,30,000
General \& Administration OH-
Rs. 71,000
Selling \& Distribution OH
Rs. 68,000
Rs. 3,69,000
(v) Calculation of P/V Ratio:

$$
\begin{aligned}
\text { P/V Ratio } & =\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{\text { Sales - Variable Costs }}{\text { Sales }} \times 100 \\
& =\frac{(\text { Rs. } 185 \times 5,000 \text { units }) \text {-Rs. } 4,31,000}{\text { Rs. } 185 \times 5,000 \text { units }} \times 100=53.41 \%
\end{aligned}
$$

(a) Break-Even Sales $=\frac{\text { Fixed Costs }}{\text { P/V Ratio }}=\frac{\text { Rs.3,69,000 }}{53.41 \%}=$ Rs.6,90,882
(b) Profit earned during the last year

$$
\begin{aligned}
& =(\text { Sales }- \text { Total Variable Costs })-\text { Total Fixed Costs } \\
& =(\text { Rs. } 9,25,000-\text { Rs. } 4,31,000)-\text { Rs. } 3,69,000 \\
& =\text { Rs. } 1,25,000
\end{aligned}
$$

(c) Margin of Safety $(\%)=\frac{\text { Sales - Break even sales }}{\text { Sales }} \times 100$

$$
=\frac{\text { Rs. } 9,25,000-\text { Rs. } 6,90,882}{\text { Rs. } 9,25,000} \times 100=25.31 \%
$$

(d) Profit if the sales were 10% less than the actual sales:

$$
\begin{aligned}
\text { Profit } & =90 \%(\text { Rs. } 9,25,000-\text { Rs. } 4,31,000)-\text { Rs. } 3,69,000 \\
& =\text { Rs. } 4,44,600-\text { Rs. } 3,69,000=\text { Rs. } 75,600
\end{aligned}
$$

J.K.SHAFH CLASSES

(Q.6) Maryanne Petrochemicals Ltd. is operating at 80% capacity and presents the following information:

Break-even Sales Rs. 400 crores
P/V Ratio 30 \%
Margin of Safety Rs. 120 crores
Maryanne's management has decided to increase production to 95% capacity level with the following modifications:
(a) The selling price will be reduced by 10%.
(b) The variable cost will be increased by 2% on sales
(c) The fixed costs will increase by Rs. 50 crores, including depreciation on additions, but excluding interest on additional capital.
Additional capital of Rs. 100 crores will be needed for capital expenditure and working capital.

Required:

(i) Indicate the sales figure, with the working, that will be needed to earn Rs. 20 crores over and above the present profit and also meet 15% interest on the additional capital.
(ii) What will be the revised
(a) Break-even Sales
(b) P / V Ratio
(c) Margin of Safety

Solution :

Working Notes:

1. Total Sales $=$ Break -even Sales + Margin of Safety
$=$ Rs. 400 crores + Rs. 120 crores
$=$ Rs. 520 crores
2. \quad Variable Cost $=$ Total Sales $\times(1-\mathrm{P} / \mathrm{V}$ Ratio $)$
$=$ Rs. 520 crores $\times(1-0.3)$
$=$ Rs. 364 crores
3. Fixed Cost $=$ Break-even Sales \times P/V Ratio
$=$ Rs. 400 crores $\times 30 \%$
$=$ Rs. 120 crores
4. Profit $=$ Total Sales $-($ Variable Cost + Fixed Cost $)$
$=$ Rs. 520 crores - (Rs. 364 crores + Rs. 120 crores)
$=$ Rs. 36 crores
(i) Revised Sales figure to earn profit of Rs. 56 crores (i.e. Rs. 36 crores + Rs. 20 crores)

$$
\begin{aligned}
\text { Revised Sales } & =\frac{\text { Revised Fixed Cost } *+\text { Desired Profit }}{\text { Revised P/V Ratio** }} \\
= & \frac{\text { Rs. } 185 \text { crores }+ \text { Rs. } 56 \text { crores }}{28 \%} \\
= & \text { Rs. } 860.71 \text { Crores } \\
* \text { Revised Fixed Cost }= & \text { Present Fixed Cost }+ \text { Increment in fixed cost }+ \text { Interest on } \\
& \text { additional Capital } \\
= & \text { Rs. } 120 \text { crores }+ \text { Rs. } 50 \text { crores }+15 \% \text { of Rs. } 100 \text { crores } \\
= & \text { Rs. } 185 \text { crores }
\end{aligned}
$$

**Revised P/V Ratio : Let current selling price per unit be Rs. 100.
Therefore, Reduced selling price per unit $=$ Rs. $100 \times 90 \%=$ Rs. 90
Revised Variable Cost on Sales $=70 \%+2 \%=72 \%$
Variable Cost per unit $=$ Rs. $90 \times 72 \%=$ Rs. 64.80
Contribution per unit $=$ Rs. $90-$ Rs. $64.80=$ Rs. 25.20
Revised P/V Ratio $=\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{\text { Rs. } 25.2}{\text { Rs. } 90} \times 100=28 \%$
(ii) (a) Revised Break-even Sales $=\frac{\text { Fixed Cost }}{\text { P/V Ratio }} \times 100=\frac{\text { Rs. } 185 \text { crores }}{28 \%}=$ Rs. 660.71 crores
(b) Revised P/V Ratio $=28 \%$ (as calculated above)
(c) Revised Margin of safety $=$ Total Sales - Break-even Sales
$=$ Rs. 860.71 crores - Rs. 660.71 crores
$=$ Rs. 200 crores.

[^0]: * Working Note 3
 ** Working Note 4

[^1]: * Labour paid in 2014-15: Rs. 3,80,000 - Rs. 24,000 = Rs. 3,56,000

